

Gator Locator

NASA Student Launch 2022 Proposal

University of Florida

Swamp Launch Rocket Team 939 Center Dr, Gainesville, FL 32611 MAE-A 324 September 20th, 2021

Table of Contents

1.	General Information	7
	1.1 Adult Educators	7
	1.2 Student Team Leader	7
	1.3 Safety Officer	7
	1.4 Student Leaders	8
	1.5 Project Organization	9
	1.6 NAR/TRA Section and Mentor	9
	1.7 Hours	10
2.	Facilities and Equipment	11
	2.1 Student Design Center	11
	2.2. University of Florida Mechanical and Aerospace Engineering Building C	12
	2.2.1 Mechanical Design Lab	12
	2.2.2 Student Shop	12
	2.3 Additional Equipment	13
	2.4 Virtual Collaboration Platforms	13
	2.4.1 Microsoft Teams	13
	2.4.2 Slack	14
	2.4.3 Zoom	14
	2.4.4 SolidWorks Product Data Management (PDM)	14
	2.5 Software	15
	2.5.1 OpenRocket	15
	2.5.2 SolidWorks 2021	15
	2.5.3 MATLAB	16
3.	Safety	17
	3.1 Safety Team Responsibilities	17
	3.1.1 Safety Officer Responsibilities	17
	3.1.2 Safety Steward Responsibilities	18
	3.2 NAR/TRA Safety Procedures	18
	3.3 Hazard Recognition and Accident Avoidance	20
	3.3.1 Risks and Mitigations Assessment	20
	3.4 Safety Briefings	33
	3.4.1 Safety Orientation	33

	3.4.2 Testing Briefings	
	3.4.3 Pre-Launch Briefings	
	3.5 Caution Statements	
	3.5.1 Formatting Text	
	3.5.2 Hazard and PPE Symbols	
	3.6 Federal, State, and Local Law Compliance	
	3.6.1 Federal	
	3.6.2 State	
	3.6.3 Local	
	3.7 Rocket Motor Purchase, Storage, Transportation, and Use of Motors and Energetics	
	3.8 Written Statement	
4.	. Technical Design	
	4.1 General Vehicle Information	41
	4.1.1 Vehicle Dimensions	
	4.1.2 Material Selection and Justification	43
	4.1.3 Construction	
	4.2 Projected Altitude and Calculation Method	
	4.3 Recovery System	45
	4.4 Motor Designation	
	4.4.1 Stability Margin	
	4.5 Payload Design	50
	4.5.1 System Overview	
	4.5.2 Payload Electronics	
	4.5.3 Payload Software	53
	4.5.4 Payload Ground Station	55
	4.5.4 Payload Mechanics	
	4.6 Requirements	60
	4.6.1 General Requirements	60
	4.6.2 Vehicle Requirements	62
	4.6.3 Recovery System Requirements	
	4.6.4 Payload Experiment Requirements	71
	4.6.5 Safety Requirements	73
	4.7 Challenges	74

4.7.1 Payload Challenges74
5. STEM Engagement75
5.1 STEM Engagement Plan75
5.1.1 STEM Engagement75
5.1.2 Local Schools75
5.1.3 Engagement at the University of Florida75
6. Project Plan
6.1 Development Schedule
6.3 Funding
6.4 Sustainability Plan79
7. Conclusion
Appendix A81
Testing Plan
Launch Vehicle Testing Plan81
Payload Testing Plan84
Testing Safety by Reference Number88

Table of Figures

Figure 1: Swamp Launch team structure	9
Figure 2: Student Design Center Bay 5	11
Figure 3: Machines in the SDC	11
Figure 4: MAEC-010	12
Figure 5: Abrasive water jet room	12
Figure 6: Microsoft Teams	13
Figure 7: Swamp Launch Rocket Team Slack Channel	14
Figure 8: OpenRocket Interface	15
Figure 9: SolidWorks Interface	15
Figure 10: MATLAB Interface	16
Figure 11: Gas under compression warning	35
Figure 12: Serious health hazard warning	35
Figure 13: Health hazard/Irritant	35
Figure 14: Environmental hazard warning	35
Figure 15: Acute toxicity hazard	35
Figure 16: Corrosion warning	35
Figure 17: Oxidizer warning	35
Figure 18: Flammable warning	35
Figure 19: Explosive warning	35
Figure 20: Safety glasses	36
Figure 21: Hearing protection	36
Figure 22: Gloves	36
Figure 23: Safety shoes	36
Figure 24: Respirator	36
Figure 25: Face mask	36
Figure 26: Launch Vehicle OpenRocket Model	41
Figure 27: Launch Vehicle SolidWorks Model	41
Figure 28: Motor retainer and thrust plate assembly from Apogee Components	44
Figure 29: Altitude of Launch Vehicle given 12 ft launch rails, 20 ft/s wind, and 5° rail cant	45
Figure 30: Altimeter diagram	46
Figure 31: Separation points and ejection charge locations	47
Figure 32: First Separation Event*	47
Figure 33: Drogue Parachute Location*	48
Figure 34: Second Separation Event*	48
Figure 35: Main Parachute Location*	49
Figure 36: Thrust Curve for Aerotech K1050W-PS Motor	50
Figure 37: Projected Stability Margin as a function of time	50
Figure 38: Payload flight sequence diagram	51
Figure 39: Block diagram of payload electronics	52
Figure 40: Rough estimate of reference point bounding boxes	54
Figure 41: Example of how image will be segmented for training	55
Figure 42: Payload ground station block diagram	55
Figure 43: Payload Sled	56

Figure 44: Rail system	56
Figure 45: Payload Assembly	57
Figure 46: Payload Assembly in Airframe	57
Figure 47: Camera Mount Housing	58
Figure 48: Camera Attachment Holes	58
Figure 49: Camera Mount Assembly	59
Figure 50: Camera mount attached to the launch vehicle	59
Figure 51: Camera mounts attached to the launch vehicle as viewed from the aft	60
Figure 52: Swamp Launch budget breakdown	77

Table of Tables

Table 1: Proposal hours	10
Table 2: Required Equipment	13
Table 3: Risk Assessment Chart (RAC)	20
Table 4: RAC score chart	21
Table 5: Chemical hazard analysis	22
Table 6: Manufacturing hazard analysis	23
Table 7: Launch hazard analysis	25
Table 8: Biological hazard analysis	
Table 9: Structures FMEA	27
Table 10: Payload mechanical FMEA	27
Table 11: Payload electronics FMEA	
Table 12: Payload software FMEA	
Table 13: Avionics and recovery FMEA	
Table 14: Flight dynamics FMEA	
Table 15: Effects of environment on launch vehicle hazard analysis	
Table 16: Effects of launch vehicle on environment hazard analysis	
Table 17: Vehicle section lengths	41
Table 18: Mass estimate for the entire launch vehicle	42
Table 19: Recovery Components	45
Table 20: Descent values	46
Table 21: Ejection charge masses	47
Table 22: Gator Locator project schedule	76
Table 23: Total Project Cost	77
Table 24: Full-Scale Budget Breakdown and Total	77
Table 25: Structural Component Estimates	78
Table 26: Avionics and Recovery Component Estimates	78
Table 27: Flight Dynamics Component Estimate	78
Table 28: Payload Component Estimate	79
Table 29: Subscale Component List	79
Table 30: Launch Vehicle Testing Plan	
Table 31: Payload Testing Plan	
Table 32: Testing safety list	90

1. General Information

1.1 Adult Educators

Faculty Advisor: Dr. Richard Lind Associate Professor, Department of Mechanical and Aerospace Engineering, University of Florida ricklind@ufl.edu Office MAE-A 324 Lab MAE-A 321 939 Center Dr, Gainesville, FL 32611 352-672-0604

Faculty Advisor: Dr. Sean Niemi Instructional Assistant Professor, Department of Mechanical and Aerospace Engineering, University of Florida <u>srn@mae.ufl.edu</u> MAE-B 305

939 Center Dr, Gainesville, FL 32611 352-294-3381

1.2 Student Team Leader

Project Manager: Megan Wnek 3rd year Aerospace Engineering <u>megan.wnek@ufl.edu</u> 117 NW 15th St, Gainesville, FL 32603 352-538-3654

1.3 Safety Officer

Primary: Jason Rosenblum 3rd year Mechanical and Aerospace Engineering <u>rosenblumj@ufl.edu</u> 824 SW 8th St, Gainesville, FL 32601 813-767-6851

Secondary: Raymond Pace 4th year Industrial and Systems Engineering <u>raymond.pace@ufl.edu</u> 22032101 Simpson Hall, Gainesville, FL 32612 904-654-6899

1.4 Student Leaders

Joel Perez Swamp Launch President 4th year Mechanical and Aerospace Engineering

Mikaela De Gracia Vice President – External 3rd year Mechanical and Aerospace Engineering

Bryce Behm Vice President – Internal 4th year Mechanical Engineering

Ireland Brown Treasurer 4th year Mechanical and Aerospace Engineering

Megan Wnek Project Manager 3rd year Aerospace Engineering

Jason Rosenblum Safety Officer 3rd year Mechanical and Aerospace Engineering

Raymond Pace Safety Officer 4th year Industrial and Systems Engineering

Margaret Wielatz Structures Lead 3rd year Mechanical and Aerospace Engineering

Collin Larke Avionics and Recovery Lead 3rd year Aerospace Engineering

Brida Gibbons Testing Lead 3rd year Aerospace Engineering

Krusha Patel Flight Dynamics Lead 3rd year Mechanical and Aerospace Engineering Gabriella Peburn Educational Engagement 2nd year Mechanical and Aerospace Engineering

Joseph Pinkston Payload Mechanics Lead 3rd year Mechanical and Aerospace Engineering

Dylan Ogrodowski Payload Electronics Lead 3rd year Electrical Engineering

Abishanka Saha Payload Software Lead 2nd year Computer Science and Economics

1.5 Project Organization

Swamp Launch Rocket Team is organized into 7 technical subteams plus a nontechnical team committed to educational engagement (Figure 1). The subteams are each overseen by a technical Lead, and are designated as follows: Structures, Avionics and Recovery, Flight Dynamics, Testing, Payload Mechanics, Payload Electronics, and Payload Software. The team of technical and nontechnical Leads is overseen by the Project Manager. Swamp Launch estimates that approximately 5 members per subteam will be actively committed to the completion of the project, resulting in a total of approximately 50 students.

Project Manager (Megan Wnek)

1.6 NAR/TRA Section and Mentor

The Tampa Tripoli Rocketry Association (TRA #17) is a launch site in Tampa Bay, Florida that hosts monthly launches within 150 miles of the University of the Florida. This launch site will serve as the primary launch site for completing all Project Milestones. As a backup launch site, Tripoli Fort Myers (TRA #19) is an additional launch site that provides launches on alternate dates and is still within a reasonable distance from the University in LaBelle, FL. Finally, the Spaceport Rocketry Association (NAR #342, Tripoli #73) in

Palm Bay, FL is available as a launch site if weather conditions at the previous two launch sites are not acceptable for safe flight.

The team mentor will be Jimmy Yawn. Mr. Yawn is a Level 3 certified NAR member and will provide launch assistance for the team on site, as well as oversee the design.

1.7 Hours

Approximately 293.5 hours were spent on the design, planning, writing, and editing of the submitted proposal (Table 1).

Proposal hours: 8/18-9/20								
Subteam	Design/Planning Hours	Meeting Hours	Writing Hours	Total				
Project Management	4	14.5	14	32.5				
Structures	7	3	10	20				
Avionics and Recovery	3	5	7	15				
Flight Dynamics	14	3	4	21				
Payloads - Mechanical	10	8	8	26				
Payloads - Electrical	12	8.5	13	33.5				
Payloads - Software	10	7.5	4	21.5				
Testing	4.5	10	7	21.5				
Safety	3	2	10	15				
Educational Engagement	0.5	3	1.5	5				
Treasury	0	2	2	82.5				
Total	68	66.5	80.5	293.5				

Table 1: Proposal hours

2. Facilities and Equipment

2.1 Student Design Center

The Student Design Center (SDC) will be the team's primary manufacturing facility. The SDC consists of the team's designated work area, storage space, and manufacturing tools (Figure 2). The team has access to a roll-in bandsaw, drill press, and vertical bandsaw (Figure 3). One of the team's safety officers must be present for any use of the machines in the SDC. Apart from this accessibility restriction, the SDC is available to students with keycard access at any time.

Figure 2: Student Design Center Bay 5

Figure 3: Machines in the SDC

2.2. University of Florida Mechanical and Aerospace Engineering Building C

2.2.1 Mechanical Design Lab

The Mechanical Design Lab will act as a second workshop and meeting area (Figure 4). The lab provides the team access to milling machines, engine lathes, 3D printers, and an assortment of power tools.

The team has access to the Mechanical Design Lab on weekdays after 6:30 pm. The presence of a lab teaching assistant is required in order to use the machines.

Figure 4: MAEC-010

2.2.2 Student Shop

The Student Shop provides the team access to a variety of machines including bandsaws, milling machines, and a water jet (Figure 5). The team has access to the Student Shop on Tuesdays and Thursdays from 8:30 am to 6:00 pm. The presence of a design lab teaching assistant is required when using any of the machines.

Figure 5: Abrasive water jet room

2.3 Additional Equipment

In addition to the equipment highlighted above, the team will also have access to additional equipment and supplies necessary for manufacturing the launch vehicle. Equipment the team knows will be utilized is outlined below (Table 2). Additional smaller tools will also be required and are available in the team's facilities.

Required Equipment	Purpose	Accessibility		
Power drills	Body tube manufacturing	Available in the SDC and MAE-C		
Dremel	Body tube and fin	Available in MAE-C		
	manufacturing			
Assorted screwdrivers	Launch vehicle and payload	Available in the SDC and MAE-C		
	manufacturing			
Soldering iron	Payload manufacturing	Available in the SDC		
Sandpaper	Launch vehicle manufacturing	Available in the SDC		

Table 2: Required Equipment

2.4 Virtual Collaboration Platforms

2.4.1 Microsoft Teams

Microsoft Teams is a communication and file sharing platform (Figure 6). The team will utilize Microsoft Teams for budgeting, scheduling, and collaborating on Project Milestones. All participating team members will have access to Microsoft Teams through the University of Florida and will be able to request access to the team's channel. Channel requests will be approved by the Project Manager and Leads team.

Q Search			MW	- 🗆 ×
NASA SL 2021-2022 Posts Files Swam	p Launch Rocket 2 m	ore New ~ +	ZC	🗅 Meet 🗸
+ New ∨ ⊼ Upload ∨ ♀ Sync © Co	opy link ⊥ Downlo	ad + Add cloud storage	≡	– All Documents \smallsetminus
NASA SL 2021-2022				A
□ Name ∨	Modified \sim	Modified By \sim		
Avionics and Recovery	September 6	Larke,Collin Thomas		
FMEA	September 4	Pace,Raymond A		
Payload Electronics	Yesterday at 9:16 PM	Ogrodowski,Dylan		
Project Management	4 days ago	De Gracia,Mikaela		
Reports	August 22	Wnek,Megan Mari		
SL Leads meeting minutes	August 19	Wnek,Megan Mari		
Testing	6 days ago	Gibbons,Brida Eliza		
2022_nasa_students_launch_handbook.pdf	August 18	Perez,Joel S		
Purchase Order - Certs.xlsx	5 hours ago	Sanchez-Ayra,Alex		

Figure 6: Microsoft Teams

2.4.2 Slack

Slack is a communication platform that allows participants to be organized into designated channels (Figure 7). The team will utilize Slack for all communication across the entire project, including announcing General Body Meetings and Educational Engagement events. It will also serve as the primary method of communication between the Project Manager and the Leads team, as well as the subteam Leads and their designated members.

Figure 7: Swamp Launch Rocket Team Slack Channel

2.4.3 Zoom

Zoom Cloud Meetings is a video teleconferencing program. The team will utilize Zoom to meet virtually when working on Project Milestones or other aspects of the project that do not require meeting face-to-face in the facilities. Additionally, Zoom meetings will be provided as an alternative method for attending most General Body, Leads, and subteam meetings to allow the maximum number of members to participate while maintaining a safe environment.

2.4.4 SolidWorks Product Data Management (PDM)

SolidWorks PDM is a file management system that allows the team to share and collaborate on SolidWorks part, drawing, and assembly files. SolidWorks PDM will be utilized across the entire project and within subteams. SolidWorks PDM will be available to all members through the University of Florida.

2.5 Software

2.5.1 OpenRocket

OpenRocket is a model rocket simulator (Figure 8). OpenRocket will be used to model the complete launch vehicle including all materials and masses. Additionally, simulations will be utilized to select the motor and recover methods. OpenRocket is available for free and will be accessible to all team members.

						_	σ×
acket design Motors & Configuration Flight simulations							
Move up Move down Move cone	ent and fin sets Body tube	Transition	Trapezoidal	C. Detai	Freedorm	Tube Ins	Launch log
Edit	Coupler	Gartaring	Buildhead	Engine Block			
New stage Delete	Streamer	THE Shock cond	Mans Component				
มีของเป็นของมีของเป็นของมี	มีอาการโอกอองให้อากา	laan Kanadan	aadaaaadaaaad	analaandaan	dama tanadan	Fight configur	tion: [No motors]
	Add ever composed body composed to inter composed inter composed i	Add new component More dream More dream More dream Dence components More dream Dence component Dence component Dence component Dence component Dence dream Dence component Dence component Dence component Dence dream Dence dream	Add seve component: Solver down Boy components and fine asts Date component: Da	Add new component Boy components and fin sets Due component Boy components and fin sets Due component Boy component Boy component Due component </th <th>Add new component More down More down Down components and fin acts Down component <td< th=""><th>Add seve component: Boy components and in ests Rear component Boy components Boy components Boy components Boy component Boy compone</th><th>Mater component. With the down With the down</th></td<></th>	Add new component More down More down Down components and fin acts Down component Down component <td< th=""><th>Add seve component: Boy components and in ests Rear component Boy components Boy components Boy components Boy component Boy compone</th><th>Mater component. With the down With the down</th></td<>	Add seve component: Boy components and in ests Rear component Boy components Boy components Boy components Boy component Boy compone	Mater component. With the down With the down

Figure 8: OpenRocket Interface

2.5.2 SolidWorks 2021

SolidWorks 2021 is the latest version of SolidWorks, a computer aided 3D design system (Figure 9). SolidWorks will be utilized for modeling all structural components of the project. Additionally, SolidWorks drawings will be utilized to create references for manufacturing. SolidWorks 2021 will be available to all members through the University of Florida.

Figure 9: SolidWorks Interface

2.5.3 MATLAB

MATLAB is a programming and computing environment (Figure 10). MATLAB will be used primarily by the Flight Dynamics subteam to form simulations and analyze data. MATLAB is available to all team members through the University of Florida.

Figure 10: MATLAB Interface

3. Safety

The team will prioritize safety throughout the competition. There are inherent risks due to the nature of this project. This section details the measures the team has put in place to ensure that every team member takes an active part in mitigating risk and is aware of potential hazards.

A safety plan has been developed that covers all aspects of project activities, including design, assembly and manufacturing, testing, and launch attempts. The safety plan also outlines the responsibilities of the Safety Officers and Safety Stewards. The entire team has been briefed on the current safety plan through meetings hosted by the Leads. Any updates to the safety plan will be communicated via the team Slack channel and through additional meetings hosted by the Leads or the Safety Officers.

3.1 Safety Team Responsibilities

The safety team is led by Safety Officers Jason Rosenblum and Raymond Pace. It will also be comprised of Safety Stewards certified by the University of Florida Mechanical and Aerospace Engineering (MAE) department.

3.1.1 Safety Officer Responsibilities

The Safety Officers will be responsible for ensuring the safety of the team from all project hazards. A list of the Safety Officer's specific duties outlines the plan for how they will use the role to fulfill this responsibility. The Safety Officers have been identified in team General Body Meetings, and team members have been informed of all available methods of contact. These include email, phone, and direct message through the team Slack channel.

- 1. The Safety Officers will monitor team activities to emphasize safe practices and hazard mitigation.
 - a. Safety-related feedback on launch vehicle and payload design choices
 - b. Supervision of manufacturing activities
 - i. Enforce adherence to machine and tool standard operating procedures
 - c. Supervision of launch vehicle and payload assembly i. Enforce proper launch-day assembly procedure
 - d. Supervision of ground testing
 - i. NAR/TRA mentor shall also supervise ground tests
 - e. Supervision of subscale launch testing
 - i. Enforce adherence to launch preparation procedure
 - ii. Ensure all checks are carried out and redundancies are in place
 - f. Supervision of full-scale launch testing
 - i. Enforce adherence to launch preparation procedure
 - ii. Ensure all checks are carried out and redundancies are in place
 - iii. NAR/TRA mentor shall also supervise launch day procedure
 - g. Supervision of team activities on Launch Day
 - i. Hazard recognition around team launch vehicle and vehicles of others
 - ii. Compliance with NAR/TRA policies
 - iii. NAR/TRA mentor shall also supervise launch day procedure
 - h. Supervision of recovery activities after launch attempt
 - i. Close observation of launch vehicle descent and landing
 - ii. Enforcement of caution around launch vehicle debris
 - i. Verification of hazard mitigation strategies in place for STEM engagement
 - i. Supervision if active hazard mitigation is required

- 2. The Safety Officers shall verify the team has developed procedures for actively mitigating potential hazards. The Officers shall also enforce the implementation of the procedures.
- 3. The Safety Officers shall manage and maintain current revisions of the team's safety documentation.
 - a. Personal Hazard Analysis
 - b. Failure Mode Effect Analysis
 - c. Environmental Hazard Analysis
 - d. Material Safety Data Sheets
 - e. Standard Operating Procedures
- 4. The Safety Officers shall assist in the writing and development of the team's new safety documentation.
 - a. Revisions or updates to hazard analyses
 - b. Failure mode analyses for the updated payload and launch vehicle designs
 - c. Launch procedures for the updated payload and launch vehicle designs
 - d. Updated material safety data sheets for new materials

3.1.2 Safety Steward Responsibilities

Safety Stewards will assist the Safety Officers with the supervision of team members during work in the Student Design Center. This will ensure hazard mitigation strategies are being followed. A certified and experienced Safety Steward is qualified to supervise a team manufacturing process without the presence of a Safety Officer, but at least two Safety Officers or Safety Stewards will always perform supervision together. New Safety Stewards with less experience supervising relevant processes will be aided by a Safety Officer. Additionally, the Safety Stewards will have multiple methods of quick communication with the Safety Officers, such as phone or Slack direct message. The official responsibilities of the Safety Stewards have been provided by the MAE Facilities Operations Specialist, Daniel Preston.

- Safety Stewards shall enforce all protocols outlined in the SDC's Rules for Facility Use document. This includes policies for personal safety; equipment uses; facility cleanliness, organization, and respect; proper language; use of the Material & Tool List and Broken / Lost Tooling List; and all other miscellaneous policies.
- 2. Safety Stewards must have a strong understanding of each machine at the SDC.
- 3. Safety Stewards shall train students on machines, administer knowledge quizzes, and sign authorization sheets to allow future supervised equipment use.
- 4. Safety Stewards shall verify students are trained and authorized on each machine they use.
- 5. Safety Stewards shall set up each approved equipment each time a user works on a new part.
- 6. Safety Stewards shall keep watch of powered machinery as it is being used.
- 7. Safety Stewards shall manage access to common-use tools via the Material & Tool Use List.
- 8. Safety Stewards shall ensure students clean machines after each use and accept responsibility for stations not up to SDC cleaning standards.
- 9. Safety Stewards shall ensure students keep the team's bay neat and clean.

3.2 NAR/TRA Safety Procedures

The following measures will be taken as a team to ensure compliance with the NAR High Power Rocket Safety Code

- 1. The team will have a member with a level 2 certification or higher perform handling and installation of the launch vehicle motor.
- 2. Lightweight material will be used to construct the launch vehicle.
- 3. The team will use a certified, commercially made rocket motor for the launch vehicle. The motor will only be used for the purpose intended by the manufacturer and will not alter any of the motor components. The 25-foot rule will be followed at all times, meaning the launch vehicle motor will be kept at least 25 ft. away from any smoke, flames, or other open heat sources.
- 4. The launch vehicle will use an electrical launch system
 - a. Electrical motor igniters will be installed in the motor after setup on launch pad
 - b. Launch system will use a safety interlock switch in series with launch switch
 - i. Launch switch will not be installed until launch pad setup is complete
 - ii. Launch switch will return to "off" position when released
 - c. The launch vehicle motor and separation charges will be inhibited until after launch pad setup
- 5. The launch site Range Safety Officer (RSO) will remove the safety interlock or disconnect the battery in the case of a launch vehicle misfire. The team will wait a minimum of 60 seconds, or until the RSO gives approval, before approaching the misfired vehicle to troubleshoot the problem.
- 6. The RSO will initiate a 5-second countdown before launching the rocket. Only the required certified team members will be present at the launch pad to arm the vehicle's electrical firing system and altimeters. During launch, all team members will stand behind the RSO beyond the minimum personnel distance according to the NAR Safety Code. Additionally, all team members will observe the launch to check for falling debris over spectators.
- 7. The stability of the vehicle will be confirmed to be an acceptable value by the team before arriving at the launch site. The team will confirm that the project vehicle can reach a safe rail-exit velocity when loaded with the selected motor, and that a launch rail of enough length is available at the launch site. A longer rail will be used if the windspeed exceeds 5 mph. The vehicle will sit on the launchpad angled within 20 degrees of vertical. A blast deflector will be used, and dry grass will be cleared according to the minimum cleared area required from the NAR Safety Code.
- 8. The project vehicle will not contain a motor or combination of motors with a total impulse totaling more than 40,960 N-sec (9208 pound-seconds). The vehicle will also not weigh more than one-third of the certified average thrust of the selected high-powered motor at liftoff.
- 9. The Flight Dynamics Lead and assisting team members will verify that the planned trajectory of the vehicle will keep it within the boundaries of the launch site and not directly above the spectators. The vehicle trajectory will also avoid high-altitude hazards such as clouds and airplanes. The team will follow the Federal Aviation Administration regulations regarding the launch site altitude limit, and a certified member will scrub the launch if the windspeed exceeds 20 mph. The team will design the vehicle payload such that it has no explosive or flammable components.
- 10. The team will only perform launches at sites where there is wide open space away from trees, power lines, occupied buildings, or individuals not participating in launch activities. On its smallest dimension, the launch site will be at least as large as one-half of the maximum altitude to which rockets are allowed to be flown at that site

- 11. The launchpad of the vehicle will be located at least the minimum personnel distance away from any launch site boundary. The launcher will also be a minimum of 1500 ft. away from occupied buildings or public highways with traffic flow exceeding 10 vehicles per hour.
- 12. The team will design and assemble the launch vehicle with a recovery system consisting of a main parachute and drogue parachute to safely return all components to the ground undamaged. The parachutes will ensure the landing speed is low enough to protect all vehicle components. Only flame-resistant or fireproof wadding will be inserted into the recovery system. The recovery system will be designed with backup separation charges to deploy the parachutes in case of primary charge failure.
- 13. The Safety Officers and other certified members will ensure that no team member attempts to recover the vehicle from a dangerous place such as in a tree or tangled in a power line. If the vehicle is likely to recover in spectator populated areas or outside the boundaries of the launch site, then the launch will be scrubbed, or the risk will be mitigated. No team member will attempt to recover the vehicle by catching it before it touches the ground.

3.3 Hazard Recognition and Accident Avoidance

3.3.1 Risks and Mitigations Assessment

A risk assessment was conducted to evaluate the level of risk associated with project activities. The assessment consists of preliminary personnel hazards analysis, failure mode and effects analysis, and environmental hazards analyses. The assessment will be updated and amended with more hazards and mitigation strategies based on project developments. A testing plan has been established to mitigate hazards to the team (Appendix A, Table 30-Table 31).

3.3.1.1 Personnel Hazards Analysis

The personnel hazards analysis evaluates the level of risk to the personal health and safety of team members, as well as the strategies used to mitigate that risk. The score is calculated by multiplying the impact value 'l' of each risk by its likelihood value 'L' (Table 3Table 4).

	Impact (I)	Likelihood (L)
1	No effect on flight/no injury obtained/no risk of	Extremely Unlikely
1	mission loss	
2	Slight impact on flight or launch vehicle/very	Unlikely/low probability
3	minor injury/mission obstructed	
4	Moderate impact on flight/significant effect	
5	on launch vehicle /minor injury	Likely
6	Severe flight impact/extensive repair/partial	
7	mission loss or entire mission at risk/moderate	Highly likely/high probability
8	injury risk	
0	Total loss of vehicle function/moderate to severe	
9	injury	
10	Complete loss of vehicle/major injury or death of	Extremely likely/almost certain
10	personnel	

Table 3: Risk Assessment Chart (RAC)

Impact		1	2	3	4	5	6	7	8	9	10
	1	1	2	3	4	5	6	7	8	9	10
	2	2	4	6	8	10	12	14	16	18	20
	3	3	6	9	12	15	18	21	24	27	30
	4	4	8	12	16	20	24	28	32	36	40
	5	5	10	15	20	25	30	35	40	45	50
	6	6	12	18	24	30	36	42	48	54	60
	7	7	14	21	28	35	42	49	56	63	70
	8	8	16	24	32	40	48	56	64	72	80
	9	9	18	27	36	45	54	63	72	81	90
	10	10	20	30	40	50	60	70	80	90	100

Likelihood

Table 4: RAC score chart

3.3.1.1.1 Chemical Hazards

Chemical hazards are hazards posed by the team's chemical inventory. The hazards and proposed mitigations are identified by the material safety data sheets in the SDC (Table 5).

Hazard	Cause	Effect	1	L	Score	Mitigation Strategy
Cleaning agent contacts eyes	Cleaning agent sprayed into eyes	Eye irritation or blindness	4	4	16	Use of proper PPE per MSDS Spray down and away from persons
Paint thinner ignites	Flammable liquid exposed to heat source	Burns, smoke inhalation	8	2	16	Cool, well-ventilated storage Keep away from ignition sources/oxidizers
Paint thinner contacts eyes	Spilled, person touches substance then face	Eye irritation, blindness	7	1	7	Use of proper PPE per MSDS Keep lid closed when not in use
Gelcoat compound ignites	Flammable liquid exposed to heat source	Burns, smoke inhalation	8	2	16	Cool, well-ventilated storage Keep away from ignition sources/oxidizers
Gelcoat fume inhalation	Prolonged exposure to toxic fumes	Dizziness	4	1	4	Use of proper PPE per MSDS Use in well-ventilated area
All-purpose cement ignites	Flammable liquid exposed to heat source	Burns, smoke inhalation	8	2	16	Cool, well-ventilated storage Keep away from ignition sources/oxidizers

All-purpose cement ingestion	Exposure to fumes, accidental consumption	Dizziness	5	1	5	Use of proper PPE per MSDS Use in well-ventilated area
Grease contacts eyes	Spills, touching substance then face	Eye irritation, blindness	5	1	5	Use of proper PPE per MSDS
Spray paint ignites	Flammable aerosol exposed to heat source	Burns, smoke inhalation	9	4	36	Cool, well-ventilated storage Keep away from ignition sources/oxidizers
Spray paint can explodes	Compressed gas exposed to heat source	Hearing damage, Blast debris	9	1	9	Cool, well-ventilated storage Keep away from ignition sources/oxidizers
Spray paint contacts	Sprayed into eyes	Eye irritation, blindness	5	5	25	Use of proper PPE per MSDS
skin/eyes	Sprayed onto skin	Skin irritation	2	5	10	Use of proper PPE per MSDS
Spray paint	Prolonged	Dizziness	4	4	16	Use of proper PPE per MSDS Use in well-ventilated area
inhalation	fumes	Respiratory irritation	4	4	16	Use of proper PPE per MSDS Use in well-ventilated area
Epoxy contacts skin	Spilled, handled without PPE	Skin irritation	5	6	30	Use of proper PPE per MSDS

Table 5: Chemical hazard analysis

3.3.1.1.2 Physical Hazards

Physical hazards are posed by team activities such as manufacturing processes (Table 6), launch preparation, and launches (Table 7).

3.3.1.1.2.1 Manufacturing Hazards

Hazard	Cause	Effect	I	L	Score	Mitigation
Pandsaw blado	Hand in blade path while cutting material	Skin laceration	9	1	9	Keeping hands out of blade plane
touches person	Small workpiece limits space between hands and blade	iece ce Is and Skin laceration		2	18	Using a piece of material as a buffer when cutting small workpiece
Spinning drill touches member	Hand brought too close to cut zone	Skin laceration	9	1	9	Keep hands 6 inches away while machining
Sharp tool cuts person	Holding sharp tool with bare hand	Skin laceration	6	5	30	Use a rag to carry sharp tools

Hands sucked into drill press cutting zone	Wearing safety gloves while machining	Skin laceration	9	1	9	No gloves on when machining
Workpiece flies out of cutting zone and hits person	Workpiece not properly clamped in drill press vise	Skin laceration or impact injury	6	3	18	At least two clamps used on workpiece when mounting to drill press
Harmful fiberglass debris	Dust and fumes from sanded fiberglass	Skin irritation and inhalation hazard	6	4	24	Use respirator while cutting, perform cutting in well-ventilated area and alert other personnel of operation
Vise pinches person	Hands not kept out of work area	Pinching or skin laceration	4	1	4	Keep hands out of work zone when operating machinery
Soldering injury	Exposure to melted solder or hot soldering iron	Skin irritation or burns	5	2	10	Proper use of equipment, space between soldering zone and body parts
Hammer injury	Hammer impacts person's body	Pinching, contusion, or skin laceration	5	2	10	Body parts clear of hammer work area, no excessive force used
Exposure to battery acid	Batteries dropped or abused	Chemical hazard or skin irritation	6	2	12	Proper battery storage, safe handling
Loud manufacturing process	Long duration of operation	Hearing damage	4	8	32	Wear ear protection
Sudden and excessively loud operation	Person startled by operation while in proximity to sharp tools	Skin lacerations or physical trauma	4	2	8	Verbal warning before any loud and sudden operation is performed
Material debris in workspace	Cutting material causes chips or dust	Eye irritation or skin laceration	3	10	30	Wear safety glasses always, debris cleared with air or rag

Table 6: Manufacturing hazard analysis

3.3.1.1.2.2 Launch Hazards

Hazard	Cause	Effect	I	L	Score	Mitigation
Motor ignites near person	People close to launchpad during ignition	Hearing damage or burns	8	1	8	Abide by NAR minimum distance code

	Ignition during motor loading	Hearing damage or burns	8	2	16	Ground motor loading area, no member in fire-line of energetic
	ignition after failed launch attempt	Hearing damage or burns	8	1	8	team waits 60 seconds to approach launch vehicle on launchpad
	Parachutes come untied	Impact injury or skin laceration	7	3	21	Verify correct knots used to tie parachutes (Test 7) Maintain proper stand-off distance Aim launch vehicle away from crowds/personnel
	Recovery harness fails	Impact injury or skin laceration	7	2	14	Examine cords used for frayed portions Maintain proper stand-off distance Aim launch vehicle away from crowds/personnel
	Main parachute does not deploy	Impact injury or skin laceration	7	4	28	Redundant altimeters and blast charges (Tests 2/7) Maintain proper stand-off distance Aim launch vehicle away from crowds/personnel
Falling debris	Drogue parachute does not deploy	Impact injury or skin laceration	7	4	28	Redundant altimeters and blast charges (Tests 2/7) Maintain proper stand-off distance Aim launch vehicle away from crowds/personnel
	Spectator attempts to catch descending launch vehicle	Impact injury or skin laceration	6	2	12	Maintain proper stand-off distance Aim launch vehicle away from crowds/personnel
	Fins break off launch vehicle body during flight	Impact injury or skin laceration	6	2	12	Multiple points of contact for adhesive and sufficiently strong fin material selected (Tests 1/4) Maintain proper stand-off distance Aim launch vehicle away from crowds/personnel
	Main Parachute does not open after ejecting	Impact injury or skin laceration	7	4	28	Verify no interference between shroud lines and parachute protector

	Drogue chute does not open after ejecting	Impact injury or skin laceration	7	4	28	Verify no interference between shroud lines and parachute protector
	No separation events after apogee	Severe impact injury or death	10	3	30	Redundant altimeters and ejection charges, test E- charges (Test #2) Maintain proper stand-off distance Aim launch vehicle away from crowds/personnel
Ballistic launch	Launch vehicle changes trajectory mid-flight	Severe impact injury	9	4	36	Verify launch vehicle design is sufficiently stable before launch Maintain proper stand-off distance Aim launch vehicle away from crowds/personnel
vehicle hits person	Launch vehicle exits too slowly off launch rail	Severe impact injury	9	2	18	Verify safe exit velocity achievable with motor and provided launch rail length Maintain proper stand-off distance Aim launch vehicle away from crowds/personnel
	Ignition during motor loading	Severe impact injury	10	2	20	Launch vehicle pointed away from spectators, members do not stand behind fuselage Maintain proper stand-off distance Aim launch vehicle away from crowds/personnel
Black	Static electricity ignites black powder	Skin laceration and severe burns	7	3	21	Members dispel electric charge by contact with metal post/shelf prior to handling black powder
powder ignites near person	Ejection charge prematurely ignites during testing	Skin laceration and severe burns	7	3	21	Verify proper wiring of charges and altimeters Remove voltage source until team members are safe distance away
Electrical shock/thermal burns from component wiring	Live wire from electrical component exposed	Burns and minor electrocution	4	2	8	All component wiring complete before applying power supply

Table 7: Launch hazard analysis

3.3.1.1.3 Biological Hazards

Biological hazards are posed by living organisms, such as bacteria and wildlife (Table 8).

Hazard	Cause	Effect	I	L	Score	Mitigation Strategy
	Not wearing a facemask	Member infected with COVID- 19	7	8	56	Follow university policy regarding facemask use
Spread of COVID-19	Not maintaining 6 feet of distance	Member infected with COVID- 19	7	8	56	Limit number of members in SDC
	Not sanitizing hands frequently	Member infected with COVID- 19	7	5	35	Provide accessible sources of hand sanitizer

Table 8: Biological hazard analysis

3.3.1.2 Failure Mode and Effects Analysis

Failure mode and effects analysis (FMEA) evaluates the impact of component failure on the launch vehicle and its ability to complete the mission. The completed FMEAs include: Structures (Table 9), Payloads (Table 10Table 12Table 12), Avionics and Recovery (Table 13), and Flight Dynamics (Table 14). Three ratings are given to each failure mode to quantify the significance of the failure: severity, occurrence, and detection. Severity is rated from 1 to 10 where a rating of 1 means that the failure has no effect while a rating of 10 is a catastrophic failure. Occurrence is rated from 1 to 10 where a rating of 1 means that the failure has little to no chance of occurring while a 10 indicated it is incredibly likely to occur. Detection is rated from 1 to 10 where a 1 is a failure that has a high likelihood of detection while a 10 is a failure that has an extremely low likelihood of detection. A risk priority number (RPN) is calculated as the product of the ratings and will be used to inform the team where mitigation strategies are needed.

3.3.1.2.1 Structures

Component	Function	Failure	Failure Cause	Failure Effects			S^1	O ²	D^3	RPN ⁴	Corrective Actions
		Mode		Local Effects	Next Higher	System Effects					
					Level						
Airframe an	Contains the	Breaks	Manufacturin	Fails to	Launch	Launch vehicle is	10	3	3	90	Inspect launch
d coupler	payload and		g defect or	contain	vehicle	unrecoverable					vehicle before and
	vehicle hardwar		poor	payload and	assembly						after each launch
	e		transportatio	other	fails						
			n	internal							
				components							
Fin Fillets	Epoxy keeps the	Ероху	Improper	Launch	Uncontrolle	Launch vehicle drifts	8	2	4	64	Follow proper
	fins attached to	fails	application	vehicle loses	d flight	or moves					procedures for
	the aft airframe			stability		uncontrollably,					applying epoxy to
	and motor tube					posing a hazard					fins
	assembly										
Centering	Keeps the motor	Ероху	Improper	Launch	Uncontrolle	Launch vehicle drifts	10	2	5	100	Inspect launch
ring	centered within	fails	application	vehicle loses	d flight	or moves					vehicle before and
	the airframe			stability		uncontrollably					after each launch

Centering	Keeps the motor	Breaks	Manufacturin	Launch	Uncontrolle	Launch vehicle drifts	10	2	3	60	Inspect component
ring	centered within		g defects	vehicle	d flight	or moves					for defects
	the airframe			loses stabilit		uncontrollably					immediately after
				у							manufacturing
Bulkhead	Seals the ends of	Ероху	Improper	Fails to	Ejection	Parachutes are not	8	2	2	32	Inspect component
	the couplers and	fails	application	maintain	charges fail	deployed properly,					for defects
	protects internal			sufficient	to separate	or internal					immediately after
	components			seal	vehicle	components are					manufacturing
						damaged					
Bulkhead	Seals the ends of	Breaks	Manufacturin	Fails to	Ejection	Parachutes are not	8	2	2	32	Inspect launch
	the couplers and		g defects	maintain	charges fail	deployed					vehicle before and
	protects internal			sufficient	to separate	properly, or internal					after each launch
	components			seal	vehicle	components are					
						damaged					
Shear pins	Keeps	Early	Excessive	Airframe and	Premature	Reduced altitude,	8	3	8	192	Test ejection charges
	components	shearing	pressure from	couplers	parachute	failure to complete					and ensure that
	connected		other	separate	deployment	payload mission					design adequately ho
	before		events or								uses
	separation		excessive								internal components
	events		force from								so shear pins do not
			poor packing								break
											prematurely (Tests
											#11, #12)
Shear pins	Keeps	Do	Insufficient	Parachutes	Rapid	Launch vehicle	8	4	8	256	Test ejection
	components	not shear	ejection	do not	descent of	impacts ground with	1				charges to
	connected		charge during	deploy	launch	high velocity					find sufficient
	before		separation		vehicle						amount of black
	separation		event								powder for
	events										separation (Test #15)

Table 9: Structures FMEA

3.3.1.2.2 Payloads

3.3.1.2.2.1 Payload Mechanical

Component	Function	Failure	Failure Cause	Fa	Failure Effects		S1	O ²	D ³	RPN ⁴	Corrective
		Mode		Local Effects	Next Higher	System Effects	1				Actions
					Level						
3D Printed	Protect and	Fracture	Stresses and	Cracking/breaking	Damaged	Loss of payload	7	2	4	56	Extensive
Sled	hold all		vibrations	of plastic	electronics	functionality					vibrations and
	electronics				on payload						stress tests to
	on the										ensure
	payload										structural
											integrity (Test
											#16)
Rail System	Secure	Fracture	Stresses and	Cracking or	Payload	Extensive	8	3	2	48	Test for
	payload in		shearing	shearing from	comes loose	damage to					payload
	rocket			payload	during flight	payload					compatibility
											and flight
											performance
											(Test #16)

Table 10: Payload mechanical FMEA

3.3.1.2.2.2 Payload Electronics

Component	Function	Failure	Failure Cause		Failure Effects	;	S ¹	O ²	D ³	RPN ⁴	Corrective
		Woue		Local Effects	Next Higher Level	System Effects					Actions
Lithium Battery	Provides power to electronic payload components	Short circuit	Unintended connection between the positive and negative battery terminals.	High current flow within the battery, generating	Fire within the launch vehicle.	Loss of the payload and vehicle.	9	2	2	36	Ensure no loose or exposed metallic objects are
				excessive heat.							present in the payload bay. Ensure power terminals are fully insulated.
Radio Transceiver	Provides communicat ion between the payload and ground station.	Radio interferenc e	Two or more transmitters transmitting on the same frequency simultaneously.	Data received by the ground station is altered.	The ground station is unable to correctly receive the vehicle's landing location.	The ground station is unable to display the vehicle's landing location.	1	1	1	1	Report all radio frequencies used to NASA officials to avoid overlap with other teams.
Radio Transceiver	Provides communicat ion between the payload and ground station.	Loss of signal between transmitter and receiver.	Significant physical obstructions or great distance between the two devices.	The payload is unable to send or receive pings with the ground station.	The payload is unable to determine its distance from the ground station.	The payload is unable to determine or report its current grid location.	1	1	1	1	Ensure the antenna used has a sufficient range rating.
Digital signal processor	Controls payload peripherals and calculates vehicle's grid location.	Momentary power loss	Poor connection between the battery terminals and control board and/or vehicle vibrations.	The microcontroller reboots and data stored in SRAM is lost.	Information regarding the vehicle's flight state and position is lost.	The payload is unable to determine its current grid location.	1	2	6	12	Use power connectors with strong mechanical latches and include software power-loss recovery mechanisms.

Table 11: Payload electronics FMEA

3.3.1.2.2.3 Payload Software

Component	Function	Failure Mode	Failure Cause	Failure Effects				O ²	D ³	RPN⁴	Corrective Actions
				Local Effects	Next Higher Level	System Effects					
Digital signal	Controls	Software	Unaccounted	The	Information	The payload	1	4	6	24	Run testcases
processor	payload	debug error	edge case in	microcontroller	regarding the	is unable to					preflight, by
	peripherals and		software,	reboots. Data	vehicle's	determine					simulating effect
	calculates		causing system	may be lost or	flight state	its current					at different
	vehicle's grid		to crash	overwritten	and position	grid					altitude and
	location.				is lost.	location.					terrain

Table 12: Payload software FMEA

3.3.1.2.3 Avionics and Recovery

Component	Function	Failure Mode	Failure Cause	e Failure Effects		S1	O ²	D ³	RPN ⁴	Corrective Actions	
				Local Effects	Next Higher Level	System Effects					
Altimeter	Track and record the altitude of the rocket in order to accurately set off ejection charges to cause separation and parachute deployment f or both main and drogue parachutes.	Instant detonation of ejection charges whe n powered on	Polarity of battery reversed due to improper installation.	Ejection charges detonating on the launch pad	Hot gasses and heavy rocket components moving near team member responsible for arming altimeter	Unable to launch, potential for burns and other injuries	10	3	1	30	Test wiring of altimeters before placing in rocket and attaching ejection charges (Test #10).
Altimeter	Track and record the altitude of the rocket in order to accurately set off ejection charges to cause separation and parachute deployment for both main and drogue parachutes.	Sudden power loss	Disconnection of battery due to inflight motion	Tracking and recording of altitude halts	Ejection charges do not go off, separation does not occur, and parachutes are not deployed.	The launch vehicle goes ballistic and descends uncontrolled	10	1	5	50	Altimeters and their power sources will be secured in the avionics bay. The secondary altimete r will have its own power source.
Altimeter	Track and record the altitude of the rocket in order to accurately set off ejection charges to cause separation and parachute deployment for both main and drogue parachutes.	Reverse wiring of ejection charges, (main ejection plugged into drogue terminal)	Mislabeling of terminals or improper programing of altimeter	Early deployment of main parachute	Main parachute is deployed at Apogee	Launch vehicle drifts out of launch field, potential for launch vehicle to be lost	5	2	3	30	Proper labeling of ejection charges and altimeter terminals.

Recovery	The recovery	Tearing of	Melting of the	The launch	Sections	Partial damage	6	1	5	30	Protect the
Harness	harness	recovery	harness due to	vehicle becomes	disconnecte	to the launch					recovery harness
	tethers the	harness	ejection charge	two or more	d from the	vehicle					from ejection
	separated		gasses, insufficien	untethered	parachutes						gasses using
	sections of		t strength of	sections	will descend						the parachute
	the launch		recovery harness		significantly						protector, ensure
	vehicle				faster than						the recovery
	together				designed for						harness is strong
	during				-						enough for the
	descent.										mission during
											design and testing.
Parachute	Protects the	Holes or	Excessive use	Ejection gasses	Holes form	Faster	7	2	1	14	Inspection of the
Protector	parachute	tears in the	and age	burn the	or parts of	than anticipate					parachute
	and recovery	parachute		parachute	the	d descent rate					protector before
	harness from	protector			parachute	leading to					use
	hot ejection	-			are melted	damage to the					
	charge gasses				together	launch vehicle					
	during										
	separation										
Main	Slows the	Tangled lines	Improper storage	Parachute does	Faster than	Minimal to mild	4	5	1	20	Inspection of
parachute	launch		or packing of the	not fully inflate	anticipated	damage to the					parachute pre-
	vehicle to an		parachute	on descent	descent	launch vehicle					packing and safety
	acceptable				rate	or payload					officer or avionics
	landing										recovery
	velocity										lead pack the
											parachute for
											launch.
Main	Slows the	Holes or	Parachute	Holes or tears	Faster than	Damage to the	6	2	1	12	Inspection of
parachute	launch	tears in	protector failure	could increase in	anticipated	launch vehicle					parachute before
	vehicle to an	parachute	or exposure to	size and reduce	descent rate	or payload					selecting it for use.
	acceptable		sharp edges	the effectiveness	i						Perform regular
	landing			of the							maintenance on
	velocity			parachute							parachutes
Drogue	Deploys at	Failure of the	Holes in	Launch vehicle	Launch	Damage to the	4	1	4	16	Properly pack the
Parachute	apogee	drogue	drogue, failure to	descends much	vehicle	launch vehicle				_	drogue parachute
	to slow the	parachute to	deploy due to	faster initially	zippers or	or pavload					and follow
	initial	deploy and	insufficient	until deploymen	other						mitigation
	descent of	slow the	ejection charges,	t of main	components						strategies for other
	the launch	initial	failed altimeter.	parachute	are damaged						potential causes of
	vehicle	descent	torn recovery	ľ	during main						failure
			, harness		parachute						
					deployment						

Table 13: Avionics and recovery FMEA

3.3.1.2.4 Flight Dynamics

	0 1										
Component	Function	Failure Mode	Failure Cause	I	Failure Effects			O ²	D ³	RPN ⁴	Corrective Actions
				Local Effects	Next Higher Level	System Effects					
Propellant	Generate	Propellant	Improper storage	Improper	Changes	Overpressure	9	3	4	108	Ensure the structural
	appropriate	Failure	of motor.	propellant	the	risks,					integrity of the
	thrust to			burnout or	propellant	unpredictable					propellant by visually
	propel the			incomplete	burn	trajectory/flight					ensuring defects, or
	rocket.			propellant	distribution	, or rocket does					moisture is not present.
				ignition.	creating	not take off.					Motors need to be

					abrupt						contained in a Climate
					changes in						Regulated room, and
					thrust.						ensure they are handled
											carefully.
Nozzle	Controls the	Nozzle	Structural failure	Nozzle exit	Abrupt	Altered	9	3	5	135	Always handle nozzle
	mass flow	Deformation	of nozzle.	area, nozzle	changes in	trajectory of the					carefully, and visually
	rate of the			exhaust	the thrust	rocket creating					inspect ensuring defects
	propellant			pressure,	vector.	potential					are not present.
				propellant flow		danger to					
				rate change.		bystanders.					
Motor Case	Enclose solid	Case Defect	Defect or	Propellant	Motor	Structural	7	2	8	112	Always handle motor
(including	propellant to		structural failure	burns through	assembly	integrity of					case carefully, and
forward and	protect the		of the motor case	motor case	gets	motor tube and					visually inspect ensuring
aft closures)	body from		including the	interacting with	damaged.	body tube are					defects are not present.
	ignited		forward and aft	the rocket		compromised.					Always have a
	propellant.		enclosures.	body.							protective cover over
											the casing until launch.
Motor Tube	Encloses the	Motor Tube	Defect or	Motor case is	Improperly	Altered flight	6	3	6	108	Always handle motor
	motor	Fails or	structural failure	not held in	aligned	trajectory and					tube carefully, and
	assembly in	Dislodges	of the motor tube	correct	thrust	potential					visually inspect ensuring
	the correct			position.	vector	damage to					defects are not present.
	position.					other					
						components.					
Motor	Retains the	Motor Mount	Structural failure	Motor case	Damage to	Rocket integrity	7	4	7	196	Visually inspect
Mount	motor inside	Fails	of mount or	moves forward	forward	is					ensuring defects are not
	the rocket		screws improperly	in the rocket	rocket	compromised,					present and tighten
			fastened		component	and function is					screws.
					s	lost.					
Thrust Plate	Transfers	Thrust Plate	Structural failure	Structural	Improperly	Altered flight	5	4	7	140	Visually inspect
	thrust from	Fails	of thrust plate or	integrity of	aligned	trajectory and					ensuring defects are not
	centering		screws improperly	centering ring	thrust	potential					present and tighten
	rings to		fastened	becomes	vector	damage to					screws.
	airframe			compromised		other		1			
	1					components.		1			1

Table 14: Flight dynamics FMEA

3.3.1.3 Environmental Hazards Analysis

Environmental hazard analyses are hazards posed by environment to the launch vehicle (Table 15), or vice versa (Table 16).

	3.3.1.3.1	Effects	of Envirc	nment o	n Launch	Vehicle
--	-----------	---------	-----------	---------	----------	---------

Hazard	Cause	Effect	I.	L	Score	Mitigation
Precipitation soaks launch vehicle	Weather change at launch site	Ruined electronics	7	5	35	Bring canopy for prep area and waterproof storage for electronics
Descent into body of water	Launch vehicle drifts too far	Ruined electronics	7	2	14	Minimize drift with drogue, angle launch rail into wind

Launch vehicle caught in tree or power line	Launch vehicle drifts too far	Difficulty retrieving	6	4	24	Verify launch site is away from obstacles
Launch vehicle flies into cloud	Liftoff occurs without waiting for clear sky	Launch vehicle collision with unseen aircraft	9	2	18	Delay launch until sky is clear Verify that present cloud cover is not located below expected apogee
Wind	Launch vehicle drifts during descent	Launch vehicle drifts far, into potentially unsafe retrieval area	5	5	25	Angle launch rail into wind Scrub launch if wind reaches unsafe speed determined by wind speed gauge at site
	Launch vehicle changes flight trajectory	Launch vehicle crashes at high speed	9	3	18	Launch does not occur in high wind, verify launch vehicle is not over stable
Dryness	Brittle adhesive at critical joint locations	Fins, centering rings, or bulkheads come loose or break off	7	3	21	Adhesive with longer curing time used at design critical joints for improved resistance to environment
Humidity	Moisture affects electrical components	Recovery system or payload malfunction	5	7	35	Performance of electronics tested on site to verify functionality
High Temperatures	Electrical components overheat	Recovery system or payload malfunction	7	6	42	Canopy brought to launch site to keep launch prep area out of sunlight
Fog/Low Visibility	Launch vehicle descent out of view	Launch vehicle retrieval after descent difficult	7	3	28	Launch delayed until visibility improves, or launch canceled

Table 15: Effects of environment on launch vehicle hazard analysis

3.3.1.3.2 Effects of Launch Vehicle on Environment

Hazard	Cause	Effect	I	L	Score	Mitigation
Fire around launchpad	Motor ignition sets grass on fire	Fire damage to private property	7	2	14	NAR minimum distance code, remove dry grass from launch pad area
Fire at launch prep site	Black powder spilled and ignited	Fire damage to private property	8	3	24	Ensure black powder is separated from electronics and any ignition sources during prep
Litter	Components or trash left behind	Pollution of land	3	4	12	Post-launch clean-up enforced by SO

Chemical leaks	Battery acid from ruptured battery case	Harms vegetation or wildlife	5	2	10	Batteries with quality casing selected, proper disposal into designated waste bins
Launch vehicle Debris	Ballistic launch vehicle impact scatters debris	Pollution of land	5	2	10	Redundancies used in recovery system to prevent ballistic descent

Table 16: Effects of launch vehicle on environment hazard analysis

3.4 Safety Briefings

3.4.1 Safety Orientation

The safety orientation shall be the formal hazard recognition and accident-avoidance briefings for manufacturing work on the project. The orientation shall educate new members and refresh the knowledge of returning members on the team's established mitigation strategies.

- 1. The Safety Officers and Safety Stewards shall meet with small groups of team members at the MAE Student Design Center
- 2. Standard operating procedures for each machine and tool used during the project shall be explained to the groups
- 3. Potential hazards and their respective mitigation strategies shall be explicitly stated to the team members by the Safety Officers and Stewards
- 4. Live demonstrations of machine and tool use shall supplement verbal instruction
- 5. Team members should ask questions and gain experience with using project relevant tools and machinery under close supervision from the Safety Officers and Safety Stewards
- 6. Meetings shall take place throughout the competition period to ensure each member can operate in the SDC and avoid manufacturing accidents
- 7. No team member will be exempt from attending an orientation.

3.4.2 Testing Briefings

The Testing Lead, Brida Gibbons, will oversee testing procedures and shall conduct the hazard recognition and accident avoidance briefing during a meeting with her team members prior to the test. The Safety Officers and NAR/TRA mentor shall ensure the testing procedure implements established mitigation strategies. They shall also supervise the conducting of the test. When a test procedure requires the use of equipment operated by a university organization external to Swamp Launch Rocket Team, the responsibilities of the Safety Officers and NAR/TRA mentor shall fall to that organization.

3.4.3 Pre-Launch Briefings

A formal pre-launch meeting shall serve as the hazard recognition and accident avoidance briefing for launch and recovery procedures. The meeting shall also serve as a briefing for proper conduct on the launch site including, but not limited to, the rules of the private property and NAR/TRA safety policies.

The Project Manager, Safety Officers, and Leads will conduct the meeting prior to the scheduled launch. Attendance will be mandatory for team members to be present at the launch site.

3.5 Caution Statements

3.5.1 Formatting Text

Working documentation used by the team, such as standard operating procedures and safety plans, shall alert team members to cautions and warnings through distinct text formatting.

Caution statements will advise careful and attentive action from team members. The successful application of a caution statement in practice will prevent minor personal injury, project setbacks, or both.

Caution: A caution statement will be bolded in working documentation.

Warning statements will inform team members of a high risk of danger. The successful application of a warning statement in practice will prevent serious injuries, major project failures, or both.

WARNING: A WARNING STATEMENT WILL BE COMPLETELY CAPITALIZED AND LARGER THAN SURROUNDING TEXT.

3.5.2 Hazard and PPE Symbols

Caution and warning statements in the team's working documentation shall include symbols indicating the types of hazards presented by a process (Figure 11Figure 11Figure 19). The symbols will serve as a visual reference to supplement written hazard warnings or remind members to consult the team's hazard mitigation strategies before proceeding with a certain operation.

Figure 11: Gas under compression warning

Figure 12: Serious health hazard warning

Figure 13: Health hazard/Irritant

Figure 14: Environmental hazard warning

Figure 15: Acute toxicity hazard

Figure 16: Corrosion warning

Figure 17: Oxidizer warning

Figure 18: Flammable warning

Figure 19: Explosive warning
Certain processes that require the use of personal protective equipment will have PPE symbols included alongside the steps for that process in a procedure document (Figure 20-Figure 20Figure 25Figure 25).

Figure 20: Safety glasses

Figure 21: Hearing protection

Figure 22: Gloves

Figure 23: Safety shoes

Figure 24: Respirator

Figure 25: Face mask

3.6 Federal, State, and Local Law Compliance

The team has created a plan to ensure compliance with all federal, state, and local laws regarding unmanned rocket launches and motor handling.

3.6.1 Federal

3.6.1.1 Federal Aviation Regulations, 14 CFR, Subchapter F, Part 101

101.22 - The team will design a launch vehicle that meets the definition of a class 2 amateur high-power rocket. A single motor will be selected with a confirmed total impulse under 40,960 N·s to ensure compliance with the high-power rocket definition.

101.23 - The launch vehicle will be designed for a mission with a suborbital trajectory. OpenRocket simulations will be conducted to confirm the target apogee of the launch vehicle is less than 62 miles high, or the suborbital limit for aircraft. The launch vehicle trajectory will not cross outside the borders of the United States into a foreign country. The team will adhere to NAR/TRA safety protocol requiring launches to occur within the boundaries of a NAR/TRA launch site, which will be located entirely within the United States borders. The team's launch vehicle will be unmanned and will not create a hazard

to any persons, property, or other aircraft. Personnel hazard prevention compliance will be fulfilled by following the team safety plan, including the launch procedures which will mitigate all launch preparation and mission-related hazards. Property and other aircraft will be protected from hazard by complying with the launch site safety protocols and other rules put in place by the NAR/TRA and the property owners.

101.25 - The team will not operate the launch vehicle in certain environmental conditions:

- a. An altitude where clouds or other obscuring phenomena cover five-tenths of the area
- b. An altitude with horizontal visibility of less than five miles
- c. Any cloud's interior
- d. At a time not between sunrise and sunset
- e. Within 9.26 km of any airport boundary, unless the launch site has FAA authorization
- f. A controlled airspace, unless the launch site has FAA authorization
- g. An area where any persons or property unassociated with the launch are closer than a quarter of the maximum expected altitude away or closer than 1500 ft. away
- h. A launch site where there is no person at least eighteen years old, who has final authority on initiating high-powered launch activity, overseeing launch safety
- i. An area where reasonable precautions to report and control a fire caused by rocket activities are not provided

The team will ensure no launch vehicle operation occurs in areas that meet any of these criteria by performing launches at FAA authorized NAR/TRA launch sites that have protocols already in place to mitigate the conditions.

3.6.1.2 Code of Federal Regulation 27 Part 55: Commerce in Explosives

55.203 - The team will use Type 4 magazines to store low explosives used for testing procedures and launches.

55.206 - Outdoor low explosive magazines will be used for storage on launch sites. These magazines will be kept 75 ft. away from inhabited buildings, 75 ft. from public railroads and highways, and 50 ft. from other above ground explosive storage magazines

55.210 - The team will use type 4 magazines constructed from fabricated metal to store low explosives. The total amount by weight of low explosives stored by the team will never exceed 50 lbs. in case multiple magazines are required for storage in the SDC. The magazines will be fire-resistant.

3.6.2 State

The following statutes were obtained from the Florida Senate archive of state laws and regulations. All information has been confirmed as up to date in 2021.

3.6.2.1 Title XXXIII Chapter 552.12

No person shall transport any explosive into this state or within the boundaries of this state over the highways, on navigable waters or by air, unless such person is possessed of a license or permit; provided, there is excepted from the effects of this sentence common, contract and private carriers, as mentioned in the next succeeding sentence. Common carriers by air, highway, railroad, or water transporting explosives into this state, or within the boundaries of this state (including ocean-plying vessels loading or unloading explosives in Florida ports), and contract or private carriers by motor vehicle transporting explosives on highways into this state, or within the boundaries of this state, and which contract or private carriers are engaged in such business pursuant to certificate or permit by whatever name issued to them

by any federal or state officer, agency, bureau, commission or department, shall be fully subject to the provisions of this chapter; provided, that in any instance where the Federal Government, acting through the Interstate Commerce Commission or other federal officer, agency, bureau, commission or department, by virtue of federal laws or rules or regulations promulgated pursuant thereto, has preempted the field of regulation in relation to any activity of any such common, contract or private carrier sought to be regulated by this chapter, such activity of such a carrier is excepted from the provisions of this chapter.

Compliance – The team will use solid propellant motors not classified as explosives to permit transport from the SDC to launch sites.

3.6.2.2 Title XLVI Chapter 790.001

(4) "Destructive device" means any bomb, grenade, mine, rocket, missile, pipe bomb, or similar device containing an explosive, incendiary, or poison gas and includes any frangible container filled with an explosive, incendiary, explosive gas, or expanding gas, which is designed or so constructed as to explode by such filler and is capable of causing bodily harm or property damage; any combination of parts either designed or intended for use in converting any device into a destructive device and from which a destructive device may be readily assembled; any device declared a destructive device by the Bureau of Alcohol, Tobacco, and Firearms; any type of weapon which will, is designed to, or may readily be converted to expel a projectile by the action of any explosive and which has a barrel with a bore of one-half inch or more in diameter; and ammunition for such destructive devices, but not including shotgun shells or any other ammunition designed for use in a firearm other than a destructive device. "Destructive device" does not include:

- a. A device which is not designed, redesigned, used, or intended for use as a weapon;
- b. Any device, although originally designed as a weapon, which is redesigned so that it may be used solely as a signaling, line-throwing, safety, or similar device;
- c. Any shotgun other than a short-barreled shotgun;
- d. Any nonautomatic rifle (other than a short-barreled rifle) generally recognized or particularly suitable for use for the hunting of big game.

(5) "Explosive" means any chemical compound or mixture that has the property of yielding readily to combustion or oxidation upon application of heat, flame, or shock, including but not limited to dynamite, nitroglycerin, trinitrotoluene, or ammonium nitrate when combined with other ingredients to form an explosive mixture, blasting caps, and detonators; but not including:

- a. Shotgun shells, cartridges, or ammunition for firearms;
- b. Fireworks as defined in s.791.01;
- c. Smokeless propellant powder or small arms ammunition primers, if possessed, purchased, sold, transported, or used in compliance with s.552.241;
- d. Black powder in quantities not to exceed that authorized by chapter 552, or by any rules adopted thereunder by the Department of Financial Services, when used for, or intended to be used for, the manufacture of target and sporting ammunition or for use in muzzle-loading flint or percussion weapons.

Compliance – The rocket is designed to deliver a payload with no intent to be used as a weapon and, by definition, is not a "destructive device". The team will utilize quantities of black powder below the legal limit that would qualify as an "explosive."

3.6.3 Local

The National Fire Protection Association 1127 "Code for High Power Rocket Motors" is the accepted fire prevention code for the local NAR/TRA launch sites used by the team. Any statutes not explicitly mentioned in the NFPA 1127 code section are included in other safety codes in the proposal and the team's plan of compliance is stated in those sections.

3.6.3.1 NFPA 1127 Code for High Power Rocket Motors

4.1 - The team will comply with the commands and instructions of NAR/TRA range safety officers present at launch sites. This compliance also extends to individuals delegated authority by the RSO.

4.2 - Only certified high-power rocket members will launch the vehicle.

4.3 - The team will abide by the statutes of NFPA 1127, as well as those of 14 CFR Part 101 from section 3.1.5.1 in this proposal and any other federal, state, or local ordinances.

4.4 - The team will submit the launch vehicle to a pre-flight inspection by the RSO and will abide by the RSO decision to either launch or abort the mission over safety concerns.

4.5 - The team will comply with the motor use and motor handling requirements of the NFPA 1127 code:

4.5.1 - Only certified motors, reloading kits, or components will be used in the launch vehicle

4.5.2 - Single-use motors will not be dismantled or altered

4.5.3 - Single-use motors will be used only for the purpose intended by the manufacturer while following all manufacturer provided instructions.

4.5.7 - A reloadable motor kit intended for use in the launch vehicle will not be removed from its packaging until the motor installation step in the launch preparation procedure.

4.6 - The launch vehicle will be designed to withstand all operating stresses and retain structural integrity under flight conditions.

4.7 - Lightweight materials will be used to construct the launch vehicle.

4.8 - Launch vehicle stability will be verified using OpenRocket with up-to-date weight and dimensional measurements. The verification will occur on the launch site immediately prior to launch during the RSO inspection.

4.10 - The team will design the launch vehicle with a recovery system that will return all components to the ground safely at a non-hazardous landing speed.

4.10.1- The team will design an electronically actuated recovery system for both its primary and backup recovery systems.

4.10.2 - The team will use flame-resistant wadding to mitigate flame-related recovery system hazards.

4.11 - The launch vehicle payload will not have any flammable or explosive components.

4.11.2 - The payload will not contain a vertebrate animal.

4.12-4.19 - The team will perform launches at NAR/TRA sites that are in accordance with the NFPA 1127, which will ensure compliance with all launching mechanisms, launch site layout, and personnel safety statutes.

3.7 Rocket Motor Purchase, Storage, Transportation, and Use of Motors and Energetics

The Team Mentor, Jimmy Yawn, who is an active NAR member with a Level 3 certification, will purchase the selected high-powered rocket motor for the team. The motor, once purchased, will be kept in a Type 4 magazine which is painted red with "EXPLOSIVE, KEEP FIRE AWAY" written in white, 3-inch-tall letters. The magazine will be stored in the MAE Student Design Center and kept away from any heat sources, open flames, or smoke in accordance with the NAR High Power Rocketry Safety Code. This safety rule will be enforced by informing other design teams who share the SDC space of the 25-foot rule, as well as performing any tests or procedures that generate excessive heat or sparks completely outside the SDC building. While travelling to Huntsville for competition, the high-powered motor will always be stored in the magazine and kept inside the car. A locking system will be used to constrain the magazine when the car is left unattended. The magazine will be in the trunk of the automobile, constrained to the body of the car using duct tape. Nothing will be permitted to be stored on top of the magazine. The 25-foot rule will be enforced for the entirety of the trip.

3.8 Written Statement

The team has read and understood the following safety regulations and will be compliant with them throughout the duration of the project.

- 1. The team agrees to have the project vehicle submitted for a range safety inspection conducted by the RSO. The team will also comply with the determination of the safety inspection.
- 2. The team agrees that the RSO has the final word on all safety issues associated with the project vehicle. The team therefore acknowledges the right of the RSO to deny permission to launch due to safety concerns.
- 3. The team agrees that the Team Mentor is ultimately responsible for the safe flight and recovery of the project vehicle. The team accepts that the Mentor will conduct a review of the project vehicle design and assembled build. The team will not launch the vehicle until the Team Mentor conducts this review and is satisfied that it meets the safety guidelines.
- 4. The team agrees that if it does not comply with safety requirements, it will not be allowed to launch the vehicle.

4. Technical Design

4.1 General Vehicle Information

The proposal launch vehicle was modeled in OpenRocket (Figure 26) and SolidWorks 2021 (Figure 27).

Figure 27: Launch Vehicle SolidWorks Model

4.1.1 Vehicle Dimensions

Section	Exterior Length (in.)
Nosecone	20
Forward Section	38
Aft Section	55
Total	113

Table 17: Vehicle section lengths.

Nosecone Section		
Subteam	Component	Mass (oz)
Structures	Nosecone	20
Avionics and Recovery	GPS	8.0
Structures	Nosecone bulkhead	2.2
Structures	U-bolt	1
Total 31.2		
Forward Section		
Subteam Component Mass (oz		Mass (oz)
Structures	Airframe	32
Avionics and Recovery	Parachute protector	5.0
Avionics and Recovery	Main parachute	30
Avionics and Recovery	Recovery harness	16
Structures	Coupler and switchband	9.9
Avionics and Recovery	Threaded rods	6.1

Avionics and Recovery	Altimeters	0.80
Avionics and Recovery	U-bolts	2.0
Avionics and Recovery	Electronics sled	4.0
Avionics and Recovery	9-V batteries	2.4
	Total	108.2
	Aft Section	
Subteam	Component	Mass (oz)
Structures	Airframe	48
Structures	Rail Buttons	0.68
Avionics and Recovery	Drogue parachute	1.1
Avionics and Recovery	Parachute protector	1.0
Avionics and Recovery	Recovery harness	16
Payloads	Wire tubes	0.60
Structures	Epoxy*	22
Structures	Motor tube	9.8
Structures	Centering rings	4.4
Structures	Motor casing	17
Structures	Thrust plate	4.8
Structures	Motor retainer	2.3
Flight Dynamics	Motor	80
Structures	Fins	33
Payloads	Cameras	3.9
Structures	Coupler and switchband	8.9
Structures	Payload	4.4
Structures	Bulkheads	4.4
Payloads	Hardware	20
Payloads	U-bolt	1.0
	Total	283.3
	Overall Total	422.7

Table 18: Mass estimate for the entire launch vehicle.

*Epoxy mass estimated through Test #17 (Table 30, Appendix A)

The launch vehicle has a nominal outer fuselage diameter of 4 in., a total length of 113 in. (Table 17), and mass of about 423 oz with the motor and 342 oz without the motor (Table 18). It will be comprised of 3 sections: nosecone, forward section, and aft section. The nosecone, forward section, and aft section will be tethered together and connected to a dual deploy recovery system comprised of two parachutes: an 84-in. main parachute and a 24 in. drogue parachute.

The nosecone is a 5 to 1 Ogive shape with an outer diameter of 4 in. that can be purchased off the shelf from certified rocketry vendors. It has an outer length of 20 in. and a separate shoulder length of 4 in. The nosecone will be connected to the forward section with 3 shear pins. 3 shear pins are sufficiently strong enough to keep the nosecone and forward section connected before separation occurs. The nosecone shoulder will fully slide into the forward section and will have a bulkhead on the aftmost end with an

eyebolt to connect to the recovery harness. It will also house the launch vehicle's GPS which is utilized when recovering the launch vehicle.

The forward section will be 38 in. in length. The forward will contain an 84-in. main parachute. The forward airframe connects to the avionics bay with 3 plastic rivets. The forward and aft end of the avionics bay will be capped by bulkheads. Eyebolts will be mounted to the bulkheads to connect to the recovery harnesses. The aft end of the avionics bay will couple to the aft section with 3 shear pins.

The aft section will be 55-in. in length. It will contain a 24-in. drogue parachute, payload, motor assembly, and four fins. The aft section will consist of two sections of airframe and a removeable payload bay. The switchband in the aft is present to increase the ease of removal and assembly of the payload. The payload bay is coupled between each section of the aft airframe with three rivets on each side of the coupler. The payload remains contained throughout the entirety of flight. Three centering rings will be used to maintain alignment between the 2.13-in. diameter motor tube and aft airframe. The centering rings will also be used to help secure the fins. A fin guide will be used to align the fins into proper position. The aftmost centering ring will be used to mount a thrust plate. The motor retainer will then connect to the thrust plate for motor retention.

4.1.2 Material Selection and Justification

The airframe and couplers will be made of 0.06 in. thick G12 fiberglass. G12 fiberglass was selected because of its high strength, resistance to water, and resistance to forces from impact. As a result, fiberglass has the advantage of being an incredibly durable material for longer use operations. Durability in airframe material is desired to ensure the launch vehicle is recoverable and reusable. Although fiberglass presents some difficulties with manufacturing, the equipment, and resources available to students will mitigate this issue.

Centering rings and bulkheads will be made of 0.5 in. thick plywood. Plywood is being used instead of fiberglass because of its increased machinability and appropriate strength. The aftmost centering ring will be reinforced with an aluminum thrust plate. The thrust plate will reduce the shear stress on each centering ring, allowing them to be made of a slightly weaker material like plywood. Plywood has the advantage of being easily manufacturable and is a less expensive material.

The nosecone will be made of 0.08-in. thick G12 fiberglass, reinforced with a metal tip. A fiberglass nosecone was selected due to its high strength. The tip is reinforced with metal to provide extra support because it is the first point of contact upon impact and therefore experiences the greatest force. In addition to being more durable than plastic, fiberglass has the added benefit of being much heavier, which moves the center of gravity forward and increases the stability of the launch vehicle.

The motor tube will be made of 3/16-in. G12 fiberglass due to its durability and resistance to heat. The motor casing will be located inside the motor tube and secured in place with a thrust plate and a 2.13-in flanged motor retainer (Figure 28). The thrust plate transfers the force from the motor to the rocket and the motor retainer secures the motor in the aft. An aluminum thrust plate will be mounted to the aftmost centering ring. The metal motor retainer will connect to the thrust plate to keep the motor contained within the rocket. A metal flanged thrust plate will be used because it is reusable and is more durable than other materials.

Figure 28: Motor retainer and thrust plate assembly from Apogee Components

4.1.3 Construction

Manufacturing will take place in the SDC, Student Shop, and Mechanical Design Lab. Safety guidelines will be followed (Table 6).

Models and detailed design drawings will be made in SolidWorks before any manufacturing takes place. Instructions will be created for manufacturing each part. Drawings and instructions will be reviewed by Safety Officers to verify the manufacturability given the machines available. All manufacturing will be supervised by a Safety Officer and any additional personnel for the chosen facility. During manufacturing, all parts will be checked for tolerance.

4.2 Projected Altitude and Calculation Method

The projected altitude was calculated using an OpenRocket Simulation for the design proposed. The expected apogee is approximately 4682 ft, within the given range of 4,000-6,000 ft. The simulation assumes the flight conditions are in Huntsville, Alabama, 12 ft. launch rails, 20 ft/s wind, and a 5° rail cant. The lengths, diameters, and shapes of all components were chosen to accommodate the weights and sizes of the payload and avionics bay while reducing drag. Given the launch conditions, the velocity at launch exit is 90.2 ft/s. With this configuration, the motor was altered to ensure the simulation remained in altitude range and met the minimum stability requirement of 2.0 and minimum velocity requirement of 52 ft/s outlined in this proposal. To illustrate, the altitude of the launch vehicle was plotted as function of time, given the launch conditions (Figure 29).

Figure 29: Altitude of Launch Vehicle given 12 ft launch rails, 20 ft/s wind, and 5° rail cant

4.3 Recovery System

The proposed recovery system will use a dual deploy system. Altimeters will be used to control the separation events to deploy the main and drogue parachutes. The launch vehicle and parachutes will be tethered with two 0.5 in. wide and 19 ft. long tubular Kevlar recovery harnesses. The parachutes will be attached to the recovery harness using a D-link and swivel. The forward sections will be attached to the recovery harness with U-bolts on the nosecone and avionics bay bulkheads (Figure 32). The aft section will be tethered to the avionics bay with a U-bolt on the avionics bay bulkhead and an eye-bolt on the payload bulkhead (Figure 34). The main parachute for the proposed rocket is the Skyangle Large Cert-3 parachute. The drogue parachute for the proposed rocket is a 24-inch parachute from Spherachute (Table 19).

Component	Description	Dimensions/Values
Altimeter	Entacore AIM	2 programmable outputs
Recovery harness	Tubular Kevlar	1/2in wide, 19 ft long
Main parachute	Skyangle Large Cert-3	*84in diameter, 1.2 Cd
Drogue parachute	Spherachute	24in diameter, 0.75 Cd

Table 19: Recovery Components

*84 inches is not provided by the manufacturer, value calculated with use of manufacturer provided descent rate calculator to use in open rocket simulation

With a simulated apogee of 4682 ft., the descent rates the team will be targeting are 81 ft/s for the drogue parachute and 18 ft/s for the main parachute. The parachutes used to achieve these values in the simulation are a Skyangle Large Cert-3 parachute for the main parachute and a 24-inch Spherachute

parachute for the drogue. Each parachute will have a parachute protector that will be folded in to protect it from ejection gasses during deployment. These descent rates provide a total descent time of 83.7 seconds and a drift of 2456 ft. with wind speeds of 20 mph (Table).

Description	Value
Apogee	4682 ft
Drogue parachute descent rate	81 ft/s
Main parachute descent rate	*18 ft/s
Descent time from apogee	83.7 s
Drift with 20 mph winds	2456 ft

Table 20: Descent values

*Descent rate found from manufacturer provided calculator

The proposed recovery system will utilize two Entacore AIM altimeters. One will be the primary altimeter and the other will be the secondary altimeter. Each altimeter will be powered and wired independently of the other (Figure 30). Each altimeter will have its own keylock switch accessible from the outside of the launch vehicle. The altimeters will be located in the avionics bay, which will be sealed at either end with a bulkhead.

Separation will be caused by the detonation of black powder charges. The black powder will be packed with an e-match and wadding. The backup charges will be 25% larger than the primary charges and on a delay from the primary charges to ensure separation occurs (Table 21). The backup drogue ejection charge will be delayed by 1 second. The backup main ejection charge will be delayed by 50 feet in altitude. The separation events will be tested on the ground in accordance with Test #11 and Test #12 (Table 31, Appendix A).

Charge	Mass (g)
Primary main parachute	2.0
Backup main parachute	2.5
Primary drogue parachute	1.5
Backup drogue parachute	1.875

Table 21: Ejection charge masses

The ejection charges will be located to help push the parachutes out of the launch vehicle. The forward separation point was chosen to allow the main parachute to fall out of the airframe if it is not pushed out by the ejection charge. The aft separation point was chosen to limit the number of bulkheads the wires for the ejection charge must pass through to make it easier to assemble (Figure 31).

Figure 31: Separation points and ejection charge locations

The drogue parachute will deploy first, with primary deployment occurring at apogee and secondary deployment occurring one second after apogee to ensure separation occurs. The drogue parachute will deploy from the aft compartment. The separation point for this deployment will be the aft airframe separating from the avionics bay (Figure 32).

Figure 32: First Separation Event*

*Not drawn to scale

During Drogue descent, the drogue parachute will be positioned such that the hanging sections of the launch vehicle will be less likely to collide. The drogue parachute will be located closer to the avionics bay than the motor section. This positioning will also allow for the main parachute to pass fewer objects in

the air during the main parachute deployment. This will help mitigate the risk of the two parachutes tangling (Figure 33).

*Figure 33: Drogue Parachute Location**

*Not drawn to scale

The main parachute will deploy second, with primary deployment occurring at 600 ft. and secondary deployment occurring at 550 ft. The main parachute will deploy from the compartment forward of the avionics bay and aft of the nosecone. The separation point will be the forward airframe from the nosecone (Figure 34). This separation point location would allow for the parachute to fall out of the launch vehicle if the separation is less energetic than anticipated (Figure 34, Figure 35).

Figure 34: Second Separation Event*

*Not drawn to scale

The main parachute will be located closer to the nosecone section than to the avionics bay. This location will be able to utilize the momentum of the nosecone during the separation event to assist in pulling the main parachute out of the forward airframe (Figure 35).

Figure 35: Main Parachute Location*

*Not drawn to scale

4.4 Motor Designation

The aft section of the Gator Locator Rocket will house the Aerotech K1050W-PS motor and its accompanying retention system. The motor was chosen in order to ensure the project would stay within the altitude range of 4,000 ft- 6,000 ft. Additionally, it ensured stability was at least a caliber of 2.0. The simulation predicted the motor would produce a velocity of 90.2 ft/s at rail exit, attain a maximum velocity at 616 ft/s, and attain a maximum acceleration of 361 ft/s.

The reloadable Aerotech K1050W-PS has a total impulse of 2426 N*s, and a maximum thrust of 2171 N. The motor has a burn time of 2.1 sec in which it will burn 2203 g of propellant. Overall, the thrust to weight ratio is 8:1 (Figure 36).

Figure 36: Thrust Curve for Aerotech K1050W-PS Motor

4.4.1 Stability Margin

Moreover, the launch vehicle and motor configuration have a stability margin at the rail exit of 2.2. After launch rail clearance, stability remains above the minimum requirement of 2.0. The projected stability margin over time from the rail exit to apogee was plotted (Figure 37).

Figure 37: Projected Stability Margin as a function of time

4.5 Payload Design

4.5.1 System Overview

The payload system will identify the vehicle's landing location through the use of camera pose estimation and image localization in conjunction with Inertial Measurement Unit (IMU) data. Throughout the flight,

cameras onboard the vehicle will capture images of the launch field's terrain. These images will then be compared to pre-uploaded satellite images of the launch field to identify landmarks in the surrounding views that will then be used as reference locations.

The payload will continuously track its position using the identified landmarks until these landmarks are no longer visible to the onboard cameras. Once this occurs, the payload will save its last known location (as identified via camera pose estimation) and track its displacement from that position with an IMU. The final vehicle location will be stored as two characters, a row and column label. This result will be transmitted to a ground station via XBee radio transceivers, where they will be output to an LCD screen and recorded onto an SD card (Figure 38).

Figure 38: Payload flight sequence diagram

To adjust for the camera's angle relative to the ground, the camera's orientation and altitude will be captured by the IMU and altimeter respectively at the time of each picture. This data will then be used to rectify the image and then calculate where the vehicle is located on each captured image relative to the camera's principle focus point on the image. This approach was selected because it does not require the deployment of any external camera device, greatly reducing the system's mechanical complexity.

The payload mounting system is comprised of a payload sled, a rail system, and two downward facing camera shrouds. The payload sled and rail system will be located in the aft section of the launch vehicle, in their own coupler to isolate them from any ejection gases. The cameras will be bolted to the exterior of the launch vehicles airframe, towards the aft of the rocket near the fins to avoid any obstructions. These

cameras will be secured in their respective 3D printed camera mounts. To power these cameras, wires will run along the interior of the aft section through the centering rings to each of the cameras through two small cardboard cylindrical tubes. This cylindrical tube will be attached to the interior of the aft section by epoxy, to ensure it does not experience violent movements during flight. This tube will be the connection between the electronics on the payload and the cameras and ensure isolated protection of the wires from any gases or vibrations. These cameras will be the ones that capture the images of the launch field during ascent and descent, allowing the payload to utilize the image processing software and IMU data to locate the launch vehicle's location.

4.5.2 Payload Electronics

The payload will include two cameras, a digital signal processor, an inertial measurement unit, an altimeter, an XBee radio transceiver, an SD card, a SRAM chip, and a lithium-ion battery (Figure 39). All components, with the exception of batteries and external cameras, will be integrated onto a printed circuit board designed by the team.

Figure 39: Block diagram of payload electronics

4.5.2.1 Camera Specifications

Two OV5640 cameras will be fixed to the vehicle's aft to capture images of the terrain during the vehicle's flight. The cameras' attachment location at the aftmost point of the aft airframe allows each camera to capture a clear view of the launch field without obstructions by the launch vehicle. The OV5640 camera captures a 100° field of view with a resolution of 1080p at 30 frames per second. This field of view will allow the cameras to observe the entire launch field at apogee with minimum distortion.

4.5.2.2 Processor Specifications

A Texas Instruments AM5728 digital signal processor (DSP) will perform all camera pose estimation computations, control sensor sampling, and initiate radio communications. A dedicated digital signal processor is optimized for high-speed floating-point computations and can perform the necessary feature

detection. The AM5728 provides native support for image processing libraries such as OpenCV, greatly reducing the development time and complexity required for software development.

4.5.2.3 Inertial Measurement Unit Specifications

The payload will continuously sample a Bosch BNI088 Inertial Measurement Unit (IMU) to track the vehicle's acceleration throughout the flight. This acceleration data will be integrated to determine the vehicle's velocity over time. After the vehicle has descended to an altitude in which reference landmarks are no longer visible, the payload will begin using this IMU data to calculate its displacement from its last identified position. The displacement error, S, of an inertial measurement unit can be expressed as a function of accuracy, a, and time, t (Equation 1).

$$S = \frac{a \cdot t^2}{2} \tag{1}$$

To ensure the error induced by the inertial measurement unit remains under 50 ft, assuming a total vehicle flight time of 90 s, the IMU must have an accuracy of greater than 0.00038 g and a range of at least 16 g (as determined by the vehicle's maximum expected acceleration). This error will be further reduced through the application of Kalman filtering.

The IMU will record the camera's orientation at the time of each image capture. This orientation data, along with altimeter data, will be used to calculate which pixel the rocket is located above on each captured image.

4.5.2.4 Altimeter Specifications

The payload will contain an altimeter for launch detection and to assist with camera pose calculations. The vehicle's altitude will be sampled and recorded alongside each image capture to adjust for the camera's angle relative to terrain. The payload altimeter will be used solely for camera pose calculations and will be independent of the launch vehicle avionics and recover system.

4.5.2.5 Radio Specifications

A 900 MHz XBee transceiver module will be used to transmit the landing location to the ground station. This module supports an outdoor line-of-sight range of up to 9 miles with a maximum transmitting power of 250 mW.

4.5.2.6 Memory Specifications

The payload will use a 16 MB external SRAM chip and a 16 GB SD card for data storage. The SD card allows for storage of a larger quantity of data, while the external SRAM chip allows for fast access and manipulation of image data. As the cameras capture each new image, the image data will immediately be transferred to the SD card for bulk storage. While processing, the digital signal processor will then sequentially load each image from the SD card into SRAM. This approach allows for data to be collected and processed asynchronously, which in turn allows for more data to be collected while the vehicle is in flight.

4.5.3 Payload Software

The software for the electronics on board the payload and on the ground-station will be developed inhouse. The TI DSP will be running on TI-RTOS. OpenCV library will be utilized for analyzing images and performing image localization and distance calculation because of the better performance and native compatibility with TI ARM Processors.

4.5.3.1 Payload Onboard Software

The software on board will be performing image localization using a convolutional neural network (CNN) model and OpenCV on the TI DSP. This will be done by getting pictures from the camera, storing them in the SD card, and then analyzing them against pre-uploaded images of the launch field. The machine learning model will be trained for recognizing reference points in satellite Images, with multiple datasets including Spacenet. In addition, the team will also conduct supervised learning by creating a dataset of 100 sets of images, with each set consisting of 1 satellite images and 9 aerial images. The final model will undergo supervised training on the satellite image of the launch field with the unique reference points (lakes, trees, buildings etc.) pre-segmented and used as parameters. Each reference point will be further segmented according to the gridded dimensions (every grid box is 250 ft. x 250 ft.) so that the payload is able to identify the position even if the entire reference point is not in camera view (Figure 40), (Figure 41Figure).

The analysis will be done by calculating the distance from the principal point of the camera to the bounding box of the reference object. The altimeter will then be used to get the current altitude and scale the distance accordingly. The known location of the reference object on the gridded map will be used to estimate the location of the rocket on the gridded map. For images taken at a tilted angle, a gyroscope will be used to account for the tilt to rectify the image, and then the position will be calculated as described before.

Once the vehicle's final landing location is determined, the result will be transmitted to the ground station via the XBee radio transceiver.

Figure 40: Rough estimate of reference point bounding boxes

		1	Se-	
16	Ser.		1	

Figure 41: Example of how image will be segmented for training

4.5.4 Payload Ground Station

The ground station is responsible for receiving, saving, and displaying the vehicle landing location as determined by the payload. The ground station will consist of an Arduino microcontroller, XBee radio transceiver, SD card interface module, and LCD screen (Figure). The ground station will receive radio signals consisting of 2 characters – a letter and a number – which will correspond to the grid co-ordinates of the rocket.

Figure 42: Payload ground station block diagram

4.5.4 Payload Mechanics

The structure of the payload consists of one 3D printed sled, and two 3D printed camera mounts on the exterior of the launch vehicles air frame. The 3D printed sled will be located in the aft of the launch vehicle, providing the necessary electronic and computing power for the images and processing of the images. The structure of the sled and the rail system of the payload allows for easy detachment from the launch vehicles airframe, allowing the removal of the sled from the launch vehicle possible. This enables the team to change components on the PCB as well as perform constant tests on the different electrical components.

4.5.4.1 Sled Specifications

The electronics and PCB will be housed and retained within the 3D printed sled. The sled will be manufactured by the Prusa 3D printers available in the MAE-C facility. The sled will have outer walls that contain a small cutout on both sides that will allow the PCB to slide in without any interference (Figure 43). The depth of the cutouts will be 0.1 in. larger than the thickness of the selected PCB, roughly 0.7 in, enabling the PCB to slide into the sled. Rubber seals will then be placed on the ends of these cutouts to ensure the PCB doesn't slide out, and to help absorb any vibrations the sled endures during flight and descent. The overall dimensions of the sled are 7.00 in. x 3.75 in. x 2.00 in., ensuring the sled will have clearance inside of the launch vehicles airframe. Towards the rear of the sled behind the PCB cutouts is

where the battery compartments will be located. Each compartment will be capable of securing a lithiumion battery that will be used to power the electronics on the sled. These compartments will have two small slits on the sides, 0.5 in x 0.15 in to allow a strap to be attached around the batteries ensuring the batteries are tightly secured.

Figure 43: Payload Sled

4.5.4.2 Rail System Specifications

The rail system of the payload is what secures the payload to the launch vehicles airframe, while also allowing the sled to be easily removed for any modifications or tests. The rail system will also be 3D printed using PETG filament, lowering manufacturing costs and complexity. The rail system utilizes a beam cutout that matches the one located on the bottom of the payload to ensure a smooth connection (Figure 44Figure). The rails length will be slightly shorter than the sled at 6.75 in. The width of the rail system is 2.0 in, with a height of 1.0 in. The rail system will be permanently attached to the removable coupler of the payload section with epoxy on the underside.

Figure 44: Rail system

4.5.4.3 Payload Assembly

The payload assembly consists of one 3D printed sled and one 3D printed rail system. The sled will slide onto the rail system, allowing the sled to be removed from the launch vehicle whenever needed (Figure 45). Rubber seals will also be placed at the end of the rail system to ensure the payload does not slide out of the rail during flight. The rubber seal will also help absorb vibrations the payload assembly will experience during flight. The payload assembly is concentric with the 4.0 in diameter airframe, ensuring there is no interference between the payload and the airframe (Figure 46).

Figure 46: Payload Assembly in Airframe

4.5.4.4 Camera Mount

The cameras will be located on the exterior of the launch vehicles airframe, to enable a series of aerial images for the image processing software (Figure 50, Figure 51). These cameras will be mounted using a 3D printed casing designed to hold the cameras steady during flight (Figure 47). The camera mount is secured to the launch vehicles airframe using two ¼-20 fasteners, along with their corresponding ¼-20 well-nuts (Figure 48). The camera mount will have a small hole in the camera housing compartment to allow the wires from the payload access to the camera. A cover is placed on the side of the camera mount housing to protect the wiring and camera (Figure 49). This cover is attached to the camera mount housing through two ¼-20 fasteners and their corresponding hex-nuts. The wiring that attaches to the camera will be connected from the payload via a 0.25 in diameter cardboard tube. This cardboard tube will travel along the interior of the launch vehicles airframe from the payload to the cameras, passing through the centering rings. The centering rings will have a drilled hole to enable the tube to pass through them, and the tube will be epoxied to the interior of the launch vehicles airframe.

Figure 47: Camera Mount Housing

Figure 48: Camera Attachment Holes

Figure 49: Camera Mount Assembly

Figure 50: Camera mount attached to the launch vehicle

Figure 51: Camera mounts attached to the launch vehicle as viewed from the aft.

4.6 Requirements

4.6.1 General Requirements

Requirement	Implementation Plan
1.1. Students on the team will do 100% of the project, including design, construction, written reports, presentations, and flight preparation with the exception of assembling the motors and handling black powder or any variant of ejection charges, or preparing and installing electric matches (to be done by the team's mentor). Teams will submit new work. Excessive use of past work will merit penalties.	The entirety of the launch vehicle and payload will be designed, manufactured, and prepared by the students on the team. All reports will be written by the students and the work will not be plagiarized or recycled.
1.2. The team will provide and maintain a project plan to include, but not limited to the following items: project milestones, budget and community support, checklists, personnel assignments, STEM engagement events, and risks and mitigations.	The team will create an outline that includes project milestones, a budget, community support, checklists, personnel assignments, STEM engagement events, risks, and mitigations. This document will be updated when new reports are generated.
 1.3. Foreign National (FN) team members must be identified by the Preliminary Design Review (PDR) and may or may not have access to certain activities during Launch Week due to security restrictions. In addition, FN's may be separated from their team during certain activities on site at Marshall Space Flight Center. 1.4. The team must identify all team members 	Due to security restrictions, FN team members must be identified by the subteam leaders. A compiled list of all FN members will be submitted prior to PDR and may or may not have access to certain activities or be separated from their team during Launch Week at Marshall Space Flight Center. Team members who will attend Launch Week
who plan to attend Launch Week activities by the	activities will be members with consistent engagement, a selected mentor, and a limit of 2

Critical Design Review (CDR). Team members will	adult educators. A list of these active members
include:	that plan to attend will be compiled prior to CDR.
1.4.1. Students actively engaged in the project	
throughout the entire year.	
1.4.2. One mentor (see requirement 1.13).	
1.4.3. No more than two adult educators	
1.5. The team will engage a minimum of 250 participants in direct educational, hands-on science, technology, engineering, and mathematics (STEM) activities. These activities can be conducted in-person or virtually. To satisfy this requirement, all events must occur between project acceptance and the FRR due date. A template of the STEM Engagement Activity Report can be found on pages 40-43.	At least 250 participants will engage in direct educational STEM activities offered by the team in-person or online during the time between project acceptance and the FRR due date. This requirement will be satisfied through the partnership with Alachua County Public Schools to engage with elementary and middle school students.
1.6. The team will establish and maintain a social media presence to inform the public about team activities.	An active and engaging social media presence has been established and will be maintained to publicize team activities on Instagram (@SwampLaunch), Twitter (@SwampLaunch), and Facebook (@Swamp Launch Rocket Team).
 1.7. Teams will email all deliverables to the NASA project management team by the deadline specified in the handbook for each milestone. In the event that a deliverable is too large to attach to an email, inclusion of a link to download the file will be sufficient. Late submissions of milestone documents will be accepted up to 72 hours after the submission deadline. Late submissions will incur an overall penalty. No milestone documents will be accepted beyond the 72-hour window. Teams that fail to submit milestone documents will be eliminated from the project. 1.8. All deliverables must be in PDF format. 	All email deliverable materials will be sent by the team's project manager by the deadline specified in the handbook. In the event that materials are sent in late, the team will only be allowed 72 hours after the specified deadline to send the deliverables with a penalty. There are no acceptations beyond this deadline.
1.0. In overy report teams will provide a table of	format.
contents including major sections and their respective sub-sections.	important sections and their sub-sections.
1.10. In every report, the team will include the page number at the bottom of the page.	All reports will include page numbers at the bottom of each page.
1.11. The team will provide any computer equipment necessary to perform a video teleconference with the review panel. This includes, but is not limited to, a computer system, video camera, speaker telephone, and a sufficient Internet connection. Cellular phones should be used for speakerphone capability only as a last resort.	In the event of a teleconference with the review panel, all video teleconference equipment (camera, microphone, computer, Internet connection) will be provided by the team.

1.12. All teams attending Launch Week will be required to use the launch pads provided by Student Launch's launch services provider. No custom pads will be permitted at the NASA Launch Complex. At launch, 8-foot 1010 rails and 12-foot 1515 rails will be provided. The launch rails will be canted 5 to 10 degrees away from the crowd on Launch Day. The exact cant will depend on Launch Day wind conditions.	At Launch Week, the team will utilize the 8-foot 1010 rails or the 12-foot 1515 rails canted 5 to 10 degrees away from the crowd provided by the launch services provider. These are the only launch pads the team will utilize.
1.13. Each team must identify a "mentor." A mentor is defined as an adult who is included as a team member, who will be supporting the team (or multiple teams) throughout the project year, and may or may not be affiliated with the school, institution, or organization. The mentor must maintain a current certification, and be in good standing, through the National Association of Rocketry (NAR) or Tripoli Rocketry Association (TRA) for the motor impulse of the launch vehicle and must have flown and successfully recovered (using electronic, staged recovery) a minimum of 2 flights in this or a higher impulse class, prior to PDR. The mentor is designated as the individual owner of the rocket for liability purposes and must travel with the team to Launch Week. One travel stipend will be provided per mentor regardless of the number of teams he or she supports. The stipend will only be provided if the team passes FRR and the team and mentor attend Launch Week in April.	The team's mentor is Jimmy Yawn, a level 3 certified NAR member. The team's mentor is in good standing with the NAR and has launched the required number of flights. Mr. Yawn is the designated owner of the rocket and will be traveling with the team.
1.14 Teams will track and report the number of hours spent working on each milestone.	All progress will be recorded and reported with specifications on hours spent and goals met. Each subteam will record their progress once per week.

4.6.2 Vehicle Requirements

Requirements	Implementation Plan
2.1. The vehicle will deliver the payload to an	An altitude between 4,000 and 6,000 feet AGL
apogee altitude between 4,000 and 6,000 feet	must be met for the team's vehicle to be
above ground level (AGL). Teams flying below	considered for the Altitude Award or to obtain
4,000 feet or above 6,000 feet on their	altitude points towards overall project score. The
competition launch will receive zero altitude	team's current altitude estimate is 4682 ft.
points towards their overall project score and will	
not be eligible for the Altitude Award.	
2.2. Teams shall identify their target altitude goal	A target altitude goal will be decided at the PDR
at the PDR milestone. The declared target altitude	milestone which will be used to determine the
	team's altitude score.

will be used to determine the team's altitude	
score.	
2.3. The vehicle will carry, at a minimum, two	In order to measure the altitude, the team's
commercially available barometric altimeters that	vehicle will carry at least 2 barometric altimeters
are specifically designed for initiation of rocketry	specially for rocketry recovery. This measured
recovery events (see Requirement 3.4). An	altitude from the barometric altimeter will be
altimeter will be marked as the official scoring	utilized to determine the team's altitude points
altitude used in determining the Altitude Award	and consideration for the Altitude Award.
winner. The Altitude Award winner will be given to	
the team with the smallest difference between the	
measured apogee and their official target altitude	
for their competition launch.	
2.4. The launch vehicle will be designed to be	The team's launch vehicle will be built to be able
recoverable and reusable. Reusable is defined as	to launch again without significant modifications
being able to launch again on the same day	within the same day.
without repairs or modifications.	
2.5. The launch vehicle will have a maximum of	The team's launch vehicle will have 3 sections,
four (4) independent sections. An independent	including the nosecone section, the forward
section is defined as a section that is either	section, and the aft section. In-flight separation
tethered to the main vehicle or is recovered	points will have coupler shoulders that will be at
separately from the main vehicle using its own	least 4 in. in length and nosecone shoulders that
parachute.	will be 4 in. length.
2.5.1. Coupler/airframe shoulders which are	
located at in-flight separation points will be at	
least 1 body diameter in length.	
2.5.2. Nosecone shoulders which are located at in-	
flight separation points will be at least ½ body	
diameter in length.	
2.6. The launch vehicle will be capable of being	The team's launch vehicle will be made ready for
prepared for flight at the launch site within 2 hours	flight within 2 hours as outlined by Test #24.
of the time the Federal Aviation Administration	
flight waiver opens.	
2.7. The launch vehicle and payload will be capable	Without losing any vital functionality or
of remaining in launch-ready configuration on the	components, the launch vehicle will be able to
pad for a minimum of 2 hours without losing the	withstand a launch ready position for at least 2
functionality of any critical on-board components,	hours. This will be achieved by Test #28 and #30.
although the capability to withstand longer delays	
is highly encouraged.	
2.8. The launch vehicle will be capable of being	The team's launch vehicle will utilize a motor that
launched by a standard 12-volt direct current	is compatible with a 12-volt direct current firing
firing system. The firing system will be provided by	system offered by NASA launch services.
the NASA-designated launch services provider.	
2.9. The launch vehicle will require no external	The team's chosen motor will be capable of
circuitry or special ground support equipment to	initiating launch without external circuitry or
initiate launch (other than what is provided by the	specific ground support.
launch services provider).	

2.10. The launch vehicle will use a commercially	The team's launch vehicle will use an NAR, TRA, or
available solid motor propulsion system using	CAR certified APCP motor propulsion system.
ammonium perchlorate composite propellant	Additionally, the choice of motor will be finalized
(APCP) which is approved and certified by the	before the CDR deadline. The chosen motor is an
National Association of Rocketry (NAR), Tripoli	AeroTech K1050W-PS, which satisfies the motor
Rocketry Association (TRA), and/or the Canadian	requirements.
Association of Rocketry (CAR).	If changing motors is necessary after the CDR
2.10.1. Final motor choices will be declared by the	deadline, the team will be sure to attain approval
, Critical Design Review (CDR) milestone.	from the NASA Range Safety Officer. It is
2.10.2. Any motor change after CDR must be	understood that a penalty will be given to the
approved by the NASA Range Safety Officer (RSO).	team if a motor change is necessary.
Changes for the sole purpose of altitude	
adjustment will not be approved. A penalty	
against the team's overall score will be incurred	
when a motor change is made after the CDR	
milestone, regardless of the reason.	
2.11. The launch vehicle will be limited to a single	The team will utilize one motor.
stage.	
2.12. The total impulse provided by a College or	The team's chosen motor will not exceed L-class.
University launch vehicle will not exceed 5,120	The chosen motor is an AeroTech K1050W-PS (K-
Newton-seconds (L-class).	class).
2.13. Pressure vessels on the vehicle will be	The team will not utilize pressure vessels in the
approved by the RSO and will meet the following	launch vehicle.
criteria:	
2.13.1. The minimum factor of safety (Burst or	
Ultimate pressure versus Max Expected Operating	
Pressure) will be 4:1 with supporting design	
documentation included in all milestone reviews.	
2.13.2. Each pressure vessel will include a pressure	
relief valve that sees the full pressure of the tank	
and is capable of withstanding the maximum	
pressure and flow rate of the tank.	
2.13.3. The full pedigree of the tank will be	
described, including the application for which the	
tank was designed and the history of the tank. This	
will include the number of pressure cycles put on	
the tank the dates of	
pressurization/depressurization. and the name of	
the person or entity administering each pressure	
event.	
2.14. The launch vehicle will have a minimum	The team's launch vehicle will have a static
static stability margin of 2.0 at the point of rail exit.	stability margin of at least 2.0. This will be ensured
Rail exit is defined at the point where the forward	through OpenRocket simulations to determine the
rail button loses contact with the rail.	stability margin.
2.15. The launch vehicle will have a minimum	A minimum thrust ratio of 5.0:1.0 will be enforced
thrust to weight ratio of 5.0:1.0.	on the launch vehicle.

2.16. Any structural protuberance on the rocket will be located aft of the burnout center of gravity. Camera housings will be exempted, provided the team can show that the housing(s) causes minimal	The rocket will include external camera mounts that will not provide substantial aerodynamic effect.
aerodynamic effect on the rocket's stability. 2.17. The launch vehicle will accelerate to a minimum velocity of 52 fps at rail exit.	The team's launch vehicle will reach 90.2 ft/s at the rail exit. This will be ensured through OpenRocket simulations to determine the
2.18. All teams will successfully launch and recover a subscale model of their rocket prior to CDR. The subscale flight may be conducted at any time between proposal award and the CDR submission deadline. Subscale flight data will be reported at the CDR milestone. Subscales are required to use a minimum motor impulse class of E (Mid Power motor).	The teams will launch and recover a subscale model of the rocket after the Proposal and prior to the CDR submission deadline. Section 6.1 outlines the planned schedule including this launch.
2.18.1. The subscale model should resemble and perform as similarly as possible to the full-scale model; however, the full-scale will not be used as the subscale model.	The team's subscale model will be of utmost similarity to the full-scale model in order to obtain data for the full-scale model. The team will not use the full-scale model as the subscale model.
2.18.2. The subscale model will carry an altimeter capable of recording the model's apogee altitude.	The team's subscale model will carry an Entacore AIM altimeter to record the model's apogee altitude.
2.18.3. The subscale rocket shall be a newly constructed rocket, designed and built specifically for this year's project.	The team's subscale rocket will be designed and built for this year's project.
2.18.4. Proof of a successful flight shall be supplied in the CDR report. Altimeter flight profile graph(s) OR a quality video showing successful launch and recovery events as deemed by the NASA management panel are acceptable methods of proof.	The team will provide successful flight data in the CDR report from altimeter flight profile graphs or a sufficient video showing all parts of launch and recovery.
2.18.5. The subscale rocket shall not exceed 75% of the dimensions (length and diameter) of your designed full-scale rocket. For example, if your full-scale rocket is a 4" diameter 100" length rocket your subscale shall not exceed 3" diameter and 75" in length.	The team's subscale model will not be larger than 75% of the full-scale model's dimensions.
2.19. All teams will complete demonstration flights as outlined below.	See the guidelines specified below.
2.19.1. Vehicle Demonstration Flight - All teams will successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration. The rocket flown shall be the same rocket to be flown for their competition launch. The purpose of the Vehicle Demonstration Flight is to validate the	The teams rocket will demonstrate a successful flight and recovery prior to FRR with the same rocket intended for the competition. The rocket's success will be defined by its stability, minimal changes in structure, proper recovery systems,

launch vehicle's stability, structural integrity, recovery systems, and the team's ability to prepare the launch vehicle for flight. A successful flight is defined as a launch in which all hardware is functioning properly (i.e. drogue chute at apogee, main chute at the intended lower altitude, functioning tracking devices, etc.). The following criteria shall be met during the full-scale demonstration flight:	proper preparation, and functionality of hardware.
2.19.1.1. The vehicle and recovery system will have functioned as designed.	During the full-scale flight demonstration, the team's rocket will function as intended through either the primary or redundant systems.
2.19.1.2. The full-scale rocket shall be a newly constructed rocket, designed and built specifically for this year's project.	The team's rocket will be designed and built specifically for this year's project.
2.19.1.3. The payload does not have to be flown during the full-scale Vehicle Demonstration Flight. The following requirements still apply:	The following requirements apply during the full- scale Vehicle Demonstration Flight:
2.19.1.3.1. If the payload is not flown, mass simulators will be used to simulate the payload mass.	If the payload is not flown, the mass of the payload will be simulated by mass simulators.
2.19.1.3.2. The mass simulators will be located in the same approximate location on the rocket as the missing payload mass.	The mass simulators will be placed in the aft section, approximately the same location as the payload.
2.19.1.4. If the payload changes the external surfaces of the rocket (such as camera housings or external probes) or manages the total energy of the vehicle, those systems will be active during the full-scale Vehicle Demonstration Flight.	Since external camera housings are intended for the design, these features will be included in the Vehicle Demonstration Flight.
2.19.1.5. Teams shall fly the competition launch motor for the Vehicle Demonstration Flight. The team may request a waiver for the use of an alternative motor in advance if the home launch field cannot support the full impulse of the competition launch motor or in other extenuating circumstances.	Teams must use the competition launch motor for the Vehicle Demonstration Flight since the team's home launch field is capable of supporting its motor.
2.19.1.6. The vehicle shall be flown in its fully ballasted configuration during the full-scale test flight. Fully ballasted refers to the maximum amount of ballast that will be flown during the competition launch flight. Additional ballast may not be added without a re-flight of the full-scale launch vehicle.	At the full-scale test flight, the team's rocket will be prepared in a fully ballasted configuration to test how the flight will be on Launch Day.
2.19.1.7. After successfully completing the full- scale demonstration flight, the launch vehicle or any of its components will not be modified	The launch vehicle or its components will not be changed without the agreement of the NASA Range Safety Officer after a successful full-scale demonstration flight.

without the concurrence of the NASA Range Safety Officer (RSO).	
2.19.1.8. Proof of a successful flight shall be supplied in the FRR report. Altimeter flight profile data output with accompanying altitude and velocity versus time plots is required to meet this requirement.	The FRR report will contain proof of a successful flight. This will include altimeter flight profile data output with accompanying altitude and velocity versus time plots.
2.19.1.9. Vehicle Demonstration flights shall be completed by the FRR submission deadline. No exceptions will be made. If the Student Launch office determines that a Vehicle Demonstration Re-flight is necessary, then an extension may be granted. THIS EXTENSION IS ONLY VALID FOR RE- FLIGHTS, NOT FIRST TIME FLIGHTS. Teams completing a required re-flight shall submit an FRR Addendum by the FRR Addendum deadline. 11 General and Proposal Requirements	Vehicle Demonstration flights must be made by the FRR submission deadline. An extension may be allowed if a Vehicle Demonstration Re-flight is necessary as determined by the Student Launch office. Teams completing a required re-flight must submit an FRR Addendum by the FRR Addendum deadline.
2.19.2. Payload Demonstration Flight - All teams will successfully launch and recover their full-scale rocket containing the completed payload prior to the Payload Demonstration Flight deadline. The rocket flown shall be the same rocket to be flown as their competition launch. The purpose of the Payload Demonstration Flight is to prove the launch vehicle's ability to safely retain the constructed payload during flight and to show that all aspects of the payload perform as designed. A successful flight is defined as a launch in which the rocket experiences stable ascent and the payload is fully retained until it is deployed (if applicable) as designed. The following criteria shall be met during the Payload Demonstration Flight:	The team must launch their full-scale rocket, including the payload, successfully by the Payload Demonstration Flight deadline. The payload will be launched in the rocket intended for competition. The payload must be fully retained, and the rocket will experience a stable ascent.
2.19.2.1. The payload shall be fully retained until the intended point of deployment (if applicable), all retention mechanisms shall function as designed, and the retention mechanism shall not sustain damage requiring repair.	The team's design outlines that payload will not jettison and will be retained properly within the launch vehicle.
2.19.2.2. The payload flown shall be the final, active version.	The payload will be completed and flown in its final version.
2.19.2.3. If the above criteria are met during the original Vehicle Demonstration Flight, occurring prior to the FRR deadline and the information is included in the FRR package, the additional flight and FRR Addendum are not required.	If the payload is successfully flown at the Vehicle Demonstration Flight, the Payload Demonstration Flight is not required.
2.19.2.4. Payload Demonstration Flights shall be completed by the FRR Addendum deadline. NO EXTENSIONS WILL BE GRANTED.	The Payload Demonstration Flight must be completed by the submission deadline of the FRR Addendum with no exceptions.

2.20. An FRR Addendum will be required for any	If the Payload Demonstration Flight or Vehicle
team completing a Payload Demonstration Flight	Demonstration Flight is completed after the
or NASA-required Vehicle Demonstration Re-flight	submission of the FRR report, an FRR Addendum
after the submission of the FRR Report.	must be completed by the team.
2.20.1. Teams required to complete a Vehicle	If the team requires a Vehicle Demonstration Re-
Demonstration Re-Flight and failing to submit the	flight, the team must submit the FRR Addendum
FRR Addendum by the deadline will not be	or will be banned from the final launch.
permitted to fly a final competition launch.	
2.20.2. Teams who successfully complete a Vehicle	The team must have a successful launch for both
Demonstration Flight but fail to qualify the	the Vehicle Demonstration Flight and the Payload
payload by satisfactorily completing the Payload	Demonstration Flight.
Demonstration Flight requirement will not be	
permitted to fly a final competition launch.	
2.20.3. Teams who complete a Payload	If the Payload Demonstration Flight is not
Demonstration Flight which is not fully successful	successful, the team may request to fly the
may petition the NASA RSO for permission to fly	payload during launch week, only with permission
the payload at launch week. Permission will not be	from the NASA RSO.
granted if the RSO or the Review Panel have any	
safety concerns.	
2.21. The team's name and Launch Day contact	The team must include their name and contact
information shall be in or on the rocket airframe	information on each section of the launch vehicle
as well as in or on any section of the vehicle that	that is not tethered to the main airframe.
separates during flight and is not tethered to the	
main airframe. This information shall be included	
in a manner that allows the information to be	
retrieved without the need to open or separate	
the vehicle.	
2.22. All Lithium Polymer batteries will be	Lithium Polymer batteries must be appropriately
sufficiently protected from impact with the	protected and marked using orange tape.
ground and will be brightly colored, clearly marked	
as a fire hazard, and easily distinguishable from	
other payload hardware.	
2.23. Vehicle Prohibitions:	See Vehicle Prohibitions below.
2.23.1. The launch vehicle will not utilize forward	The launch vehicle will use rear-firing motors.
firing motors.	
2.23.2. The launch vehicle will not utilize motors	The launch vehicle will use an AeroTech K1050W-
that expel titanium sponges (Sparky, Skidmark,	PS motor that does not release titanium sponges.
MetalStorm, etc.)	
2.23.3. The launch vehicle will not utilize hybrid	The motor chosen for the launch vehicle is not a
motors.	hybrid motor.
2.23.4. The launch vehicle will not utilize a cluster	A single motor is chosen for the launch vehicle.
of motors.	
2.23.5. The launch vehicle will not utilize friction	The chosen motor will use centering rings and a
fitting for motors.	thrust plate for motor retention.
2.23.6. The launch vehicle will not exceed Mach 1	The rocket will not exceed Mach 1 during flight,
at any point during flight.	ensured through utilizing OpenRocket simulations
	to determine the launch vehicle's velocity.

2.23.7. Vehicle ballast will not exceed 10% of the total unballasted weight of the rocket as it would sit on the pad (i.e. a rocket with an unballasted weight of 40 lbs. on the pad may contain a maximum of 4 lbs of ballast)	Any vehicle ballast utilized will not weigh more than 10% of the rocket's total unballasted weight.
2.23.8. Transmissions from onboard transmitters, which are active at any point prior to landing, will not exceed 250 mW of power (per transmitter).	Each transmitter must not exceed 250 mW of power.
2.23.9. Transmitters will not create excessive interference. Teams will utilize unique frequencies, handshake/passcode systems, or other means to mitigate interference caused to or received from other teams.	Each transmitter will be equipped appropriately to minimize interference.
2.23.10. Excessive and/or dense metal will not be utilized in the construction of the vehicle. Use of lightweight metal will be permitted but limited to the amount necessary to ensure structural integrity of the airframe under the expected operating stresses.	The team's design will only include minimal lightweight metal primarily in the tip of the nosecone.

4.6.3 Recovery System Requirements

Requirement	Implementation Plan
3.1. The full-scale launch vehicle will stage the deployment of its recovery devices, where a drogue parachute is deployed at apogee, and a main parachute is deployed at a lower altitude. Tumble or streamer recovery from apogee to main parachute deployment is also permissible, provided that kinetic energy during drogue stage descent is reasonable, as deemed by the RSO.	The full-scale launch vehicle will use a dual deploy system. A drogue will be deployed within 1 second of apogee, and a main parachute will deploy at 600 feet.
3.1.1. The main parachute shall be deployed no lower than 500 feet.	The main parachute will be deployed at 600 feet.
3.1.2. The apogee event may contain a delay of no more than 2 seconds.	The primary charge for the drogue deployment will not have a delay for drogue deployment.
3.1.3. Motor ejection is not a permissible form of primary or secondary deployment.	Motor ejection will not be used as a form of parachute deployment.
3.2. Each team will perform a successful ground ejection test for all electronically initiated recovery events prior to the initial flights of the subscale and full-scale vehicles.	The testing lead and safety officers will perform ejection tests for all electronic recovery events for both the subscale and full-scale launch vehicles prior to their first flights.
3.3. Each independent section of the launch vehicle will have a maximum kinetic energy of 75 ft-lbf at landing.	It will be ensured that no section of the launch vehicle has a kinetic energy that equals or exceeds 75 ft-lbf at landing. This will be done using OpenRocket simulations and the current maximum kinetic energy is estimated to be 61 ft- lbf.

3.4. The recovery system will contain redundant,	The design will include a redundant Entacore AIM
commercially available altimeters. The term	altimeter.
"altimeters" includes both simple altimeters and	
more sophisticated flight computers.	
3.5. Each altimeter will have a dedicated power	Each altimeter implemented will have an
supply, and all recovery electronics will be	independent fully-charged 9-volt battery power
powered by commercially available batteries.	source.
3.6. Each altimeter will be armed by a dedicated	The altimeters will have the ability to be armed
mechanical arming switch that is accessible from	through a key switch on the switch band of the
the exterior of the rocket airframe when the	avionics bay.
rocket is in the launch configuration on the launch	
pad.	
3.7. Each arming switch will be capable of being	The arming switches will be locked in the "On"
locked in the ON position for launch (i.e., cannot	position during launch.
be disarmed due to flight forces).	
3.8. The recovery system electrical circuits will be	The electronics included in the payload and the
completely independent of any payload electrical	recovery system will be separate and will be
circuits.	located in separate sections of the launch vehicle.
3.9. Removable shear pins will be used for both	The launch vehicle will be secured together
the main parachute compartment and the drogue	through the use of shear pins at any section that
parachute compartment.	will separate and rivets at any section that does
	not separate.
3.10. The recovery area will be limited to a 2,500	The rocket will not drift farther than 2,500 ft from
ft. radius from the launch pads.	the launch pad when landing. The current
	estimated recovery area is 2485 ft. This value will
	be re-estimated throughout the project process.
3.11. Descent time of the launch vehicle will be	The time from apogee to touch down will not
limited to 90 seconds (apogee to touch down).	exceed 90 seconds. The current estimated landing
	time is 84.7 sec.
3.12. An electronic GPS tracking device will be	A GPS will be placed in the nosecone of the launch
installed in the launch vehicle and will transmit the	vehicle and will have the ability to communicate
position of the tethered vehicle or any	with the ground station.
independent section to a ground receiver.	
3.12.1. Any rocket section or payload component,	There will not be any untethered sections of the
which lands untethered to the launch vehicle, will	launch vehicle or payload.
contain an active electronic GPS tracking device.	
3.12.2. The electronic GPS tracking device(s) will	The testing Lead will be responsible for ensuring
be fully functional during the official competition	the proper functionality of the GPS devices prior
launch.	to launch.
3.13. The recovery system electronics will not be	Any electronic devices involved in the launch
adversely affected by any other on-board	vehicle will not interfere with the recovery system
electronic devices during flight (from launch until	electronic capabilities.
landing).	
3.13.1. The recovery system altimeters will be	The recovery system altimeters will be located in
physically located in a separate compartment	the avionics bay, away from the devices
within the vehicle from any other radio frequency	implemented in the payload that will be located in
	the aft section.

transmitting device and/or magnetic wave producing device.	
3.13.2. The recovery system electronics will be shielded from all onboard transmitting devices to avoid inadvertent excitation of the recovery system electronics.	The recovery system electronics will be shielded using aluminum foil from interference with any other transmitting devices.
3.13.3. The recovery system electronics will be shielded from all onboard devices which may generate magnetic waves (such as generators, solenoid valves, and Tesla coils) to avoid inadvertent excitation of the recovery system.	The recovery system electronics will be shielded using aluminum foil from magnetic waves with any other transmitting devices.
3.13.4. The recovery system electronics will be shielded from any other onboard devices which may adversely affect the proper operation of the recovery system electronics.	The recovery system electronics will be shielded using aluminum foil from other devices that may negatively affect the recovery system by being placed in the avionics bay.

4.6.4 Payload Experiment Requirements

Requirement	Implementation Plan	
4. All payload designs shall be approved by NASA.	The team's payload design must be approved by	
NASA reserves the authority to require a team to	NASA and may be changed by NASA if necessary.	
modify or change a payload, as deemed necessary		
by the Review Panel, even after a proposal has		
been awarded.		
4.1. College/University Division – Teams shall	The team's payload design will implement	
design a payload capable of autonomously	cameras placed on the exterior of the airframe and	
locating the launch vehicle upon landing by	will be utilized to identify reference points found	
identifying the launch vehicle's grid position on an	on the ground in order to locate the launch vehicle	
aerial image of the launch site without the use of	upon landing.	
a global positioning system (GPS). The		
method(s)/design(s) utilized to complete the		
payload mission will be at the teams' discretion		
and will be permitted so long as the designs are		
deemed safe, obey FAA and legal requirements,		
and adhere to the intent of the challenge. An		
additional experiment (limit of 1) is allowed, and		
may be flown, but will not contribute to scoring. If		
the team chooses to fly an additional experiment,		
they will provide the appropriate documentation		
in all design reports so the experiment may be		
reviewed for flight safety.		
4.2.1. The dimensions of the gridded launch field	The gridded launch field dimensions are 5,000 ft	
shall not extend beyond 2,500 feet in any	by 5,000 ft.	
direction; i.e., the dimensions of your gridded		
launch field shall not exceed 5,000 feet by 5,000		
feet.		
4.2.1.1. Your launch vehicle and any jettisoned	The entirety of the launch vehicle and its	
--	---	--
components must land within the external	components will land within the 2,500 ft radius	
borders of the launch field.	since the estimated drift range is 2490 ft.	
4.2.2. A legible gridded image with a scale shall be	A gridded image of the launch field with an	
provided to the NASA management parter for	appropriate scale rids been created and will be submitted at the CDR deadline. Each square grid is	
4.2.2.1 The dimensions of each grid box shall not	250 ft by 250 ft and the grid box that the launch	
exceed 250 feet by 250 feet.	vehicle lands in will be communicated to the	
4.2.2.2. The entire launch field, not to exceed	ground station.	
5,000 feet by 5,000 feet, shall be gridded.		
4.2.2.3. Each grid box shall be square in shape.		
4.2.2.4. Each grid box shall be equal in size, it is		
permissible for grid boxes occurring on the		
perimeter of your launch field to fall outside the		
dimensions of the launch field. Do not alter the		
shape of a grid box to fit the dimension of shape		
4.2.2.5 Each grid hox shall be numbered		
4.2.2.5. The identified launch vehicle's grid box		
upon landing, will be transmitted to your team's		
ground station.		
4.2.3. GPS shall not be used to aid in any part of	A GPS is not included in the payload design. The	
the payload mission.	GPS located in the nosecone will be used only for	
4.2.3.1. GPS coordinates of the launch vehicles	verification of the payload's results.	
landing location shall be known and used solely for		
the purpose of verification of payload		
functionality and mission success.		
4.2.3.2. GPS verification data shall be included in		
your teams PLAR.	The gridded image is a high-quality satellite image	
as deemed by the NASA management team that	of the launch field, and the launch had location will	
comes from an aerial photograph or satellite	be depicted.	
image of your launch day launch field.		
4.2.4.1. The location of your launch pad shall be		
depicted on your image and confirmed by either		
the NASA management panel for those flying in		
Huntsville or your local club's RSO. (GPS		
coordinates are allowed for determining your		
launch pad location).		
4.2.5. No external hardware or software is	The hardware and software utilized is	
permitted outside the team's prep area or the	implemented only in the launch vehicle of on the ground station	
4.3 General Payload Requirements:	See the navload requirements below	
4.3.1. Black Powder and/or similar energetics are	Black Powder will be used for election charges	
only permitted for deployment of in-flight	only.	
recovery systems. Energetics will not be permitted	,.	
for any surface operations.		

4.3.2. Teams shall abide by all FAA and NAR rules	The team will follow rules set forth by the FAA and
and regulations.	NAR.
4.3.3. Any experiment element that is jettisoned	No components will be jettisoned without RSO
during the recovery phase will receive real-time	approval.
RSO permission prior to initiating the jettison	
event, unless exempted from the requirement at	
the CDR milestone by NASA.	
4.3.4. Unmanned aircraft system (UAS) payloads,	The team will not utilize UAS payloads.
if designed to be deployed during descent, will be	
tethered to the vehicle with a remotely controlled	
release mechanism until the RSO has given	
permission to release the UAS.	
4.3.5. Teams flying UASs will abide by all	The team will not utilize UAS payloads.
applicable FAA regulations, including the FAA's	
Special Rule for Model Aircraft (Public Law 112-95	
Section 336; see https://www.faa.gov/uas/faqs).	
4.3.6. Any UAS weighing more than .55 lbs. will be	The team will not utilize UAS payloads.
registered with the FAA and the registration	
number marked on the vehicle.	

4.6.5 Safety Requirements

Requirement	Implementation Plan
5.1. Each team will use a launch and safety	The team will create a launch and safety checklist
checklist. The final checklists will be included in	based on the launch requirements that will be
the FRR report and used during the Launch	included in FRR and utilized during LRR and Launch
Readiness Review (LRR) and any Launch Day	Day. This checklist will be enforced by the team's
operations.	safety officers.
5.2. Each team shall identify a student safety	Jason Rosenblum and Raymond Pace are the
officer who will be responsible for all items in	team's chosen safety officers and are responsible
section 5.3.	for the items listed below.
5.3. The role and responsibilities of the safety	The safety officers will monitor the design,
officer will include, but are not limited to:	construction, and assembly of the vehicle and
5.3.1. Monitor team activities with an emphasis on	payload. The safety officers will be present during
safety during:	ground testing procedures and will attend both
5.3.1.1. Design of vehicle and payload	the subscale launch and full-scale launch,
5.3.1.2. Construction of vehicle and payload	enforcing proper safety procedures. The safety
components	officers will oversee recovery and ensure that
5.3.1.3. Assembly of vehicle and payload	team members are following safety precautions
5.3.1.4. Ground testing of vehicle and payload	when completing recovery activities. The safety
5.3.1.5. Subscale launch test(s)	officers will also monitor any STEM engagement
5.3.1.6. Full-scale launch test(s)	activities that involve safety hazards.
5.3.1.7. Competition Launch	
5.3.1.8. Recovery activities	
5.3.1.9. STEM Engagement Activities	

5.3.2. Implement procedures developed by the	The safety officers will review the team's
team for construction, assembly, launch, and	manufacturing, assembly, launch, and recovery
recovery activities.	plans and enforce proper safety protocols during
	these processes.
5.3.3. Manage and maintain current revisions of	The team's hazard analyses, failure modes
the team's hazard analyses, failure modes	analyses, procedures, and MSDS/chemical
analyses, procedures, and MSDS/chemical	inventory data is updated by the safety officers
inventory data.	and is shared with the remaining team members
	through a Microsoft Teams account.
5.3.4. Assist in the writing and development of the	The safety officers will assist in creating and
team's hazard analyses, failure modes analyses,	writing the team's hazard analyses, failure modes
and procedures.	analyses, and procedures that will be included in
	reports.
5.4. During test flights, teams will abide by the	The team will abide by rules set forth by the safety
rules and guidance of the local rocketry club's RSO.	officers. The team will communicate appropriately
The allowance of certain vehicle configurations	prior to attending NAR/TRA launches.
and/or payloads at the NASA Student Launch does	
not give explicit or implicit authority for teams to	
fly those vehicle configurations and/or payloads at	
other club launches. Teams should communicate	
their intentions to the local club's President or	
Prefect and RSO before attending any NAR or TRA	
launch.	
5.5. Teams will abide by all rules set forth by the	The team has reviewed the rules set forth by the
FAA.	FAA and will abide by all regulations. The team's
	project plan accounts for these regulations.

4.7 Challenges

4.7.1 Payload Challenges

The team will need to address and minimize compounding errors between the camera pose estimation and inertial navigation systems. Because the error induced by the inertial navigation system grows quadratically over time, the amount of time that the vehicle remains under inertial guidance must be kept to a minimum. This error can be further reduced through calibration, the use of more than one sensor, and the application of Kalman filtering.

The cameras on board the rocket will not be perfectly still. In addition, the camera will not be pointing straight down the entire time. Thus, getting the position of the rocket by performing localization and distance calculation on a tilted image will have its own challenges.

5. STEM Engagement

5.1 STEM Engagement Plan

5.1.1 STEM Engagement

STEM in education will be taken as the interdisciplinary approach to learning all academic concepts applied in a real-world setting related to science, technology, engineering, and mathematics. The fundamental concepts juxtaposed to the engaging connection between students and the world around them highlight the most practical approach to learning. The Swamp Launch Rocket Team strives to share this practical approach with the surrounding community and local schools. The team plans to reach at least 200 elementary and middle school students and 150 high school students. The team plans to take rocketry and engineering to students in a way that is both challenging and rewarding to understand.

5.1.2 Local Schools

The team plans to bring hands-on in-person activities related to physics and engineering to Alachua County Public Schools. For the younger students in elementary school, the team will host space themed arts and crafts and introduce astronomy topics. Middle schools will be able to learn deeper concepts and build bottle rockets in small groups with Swamp Launch Team members and subteam Leads.

Older students in high school can engage in group learning on their own devices and school devices in simulation, design, and CAD to build introductory skills necessary for building rockets and prepare them for technical experiences and engineering processes in college.

Additional collaborations include Hands-On Gainesville, a group dedicated to expanding educational reach. The team plans to work with this organization to teach students more about rocketry and participate in their STEM focused partnered events. The combination of visual lectures and applying knowledge of design will provide an entertaining opportunity for growth in the community. Finally, the team plans to make DIY bottle rocket events with the Boy Scouts and teach basic rocketry.

5.1.3 Engagement at the University of Florida

Swamp Launch Rocket Team plans to pair with other UF organizations to bring Rocketry to more aspects of University of Florida campus life. The team will work with the University of Florida Benton Engineering Council in preparation for UF Engineering Week. Additionally, the team will hold weekly scheduled General Body and Design Meetings to provide general updates on our overall progress, general information on rocketry, and inform new members on all facets of the design process. Inexperienced members will be invited to participate and learn from subteam meetings to increase involvement and education. Finally, it is also Swamp Launch's goal to launch an annual collaboration with the University of Florida's American Institute of Aeronautics and Astronautics (AIAA) chapter and other Aerospace and Engineering organizations at UF to facilitate rocketry events around the local area.

6. Project Plan

6.1 Development Schedule

The team will adhere to a defined project schedule designed to meet all Project Milestones (Table 22). The schedule is primarily created around the Project Milestones and provides time for report drafting and reviewing as well as vehicle design, manufacturing, and testing.

Table 22: Gator Locator project schedule

6.2 Project Budget

The team's expected budget for the 2021-2022 season is just below \$5,600.00 (Figure 52), (Table 23). This budget is based off a total of all estimated component and travel costs, including components needed for the full-scale rocket design and the subscale rocket build. It also accounts for changes that may occur from any necessary changes and testing or unexpected damages. The components are broken down by rocket subgroup (Table 24) and listed out (Table 25-29). Travel costs are also included in the budget accounting for road travel and hotel stays for the competition and launches.

Category	Total Cost (\$)
Full-Scale Rocket	3,225.00
Travel	2000.00
Subscale	291.23
Testing	70.00
Total:	5586.23

Table 23: Total Project Cost

Subgroup	Total Cost (\$)
Structures	782.31
Avionics and Recovery	33.13
Flight Dynamics	1082.34
Payloads	925.34
Total:	3225.00

Table 24: Full-Scale Budget Breakdown and Total

Component	Quantity	Unit Cost (\$)	Total Cost (\$)
4" 5:1 fiberglass Ogive	1	79.95	79.95
nosecone w/ metal tip			
4" diameter fiberglass	2	116.75	233.50
airframe (5 ft)			
2.1" fiberglass motor	1	43.20	43.20
tube (3 ft)			
3/16" thick, 24" x 24"	2	51.30	102.60
G10 fiberglass sheets			
(fins)			
1/2" thick, 24" x 24"	2	17.60	35.20
plywood (bulkheads,			
centering rings)			
Jewel (10 oz)	4	14.27	57.08
RocketPoxy (2 qt)	2	85.31	170.62
Shear Pins	4	3.52	14.08
Rivets	4	7.41	29.64
Rail buttons	2	8.22	16.44
Sandpaper	N/A	N/A	Inventory
	Total:		782.31

Table 25: Structural Component Estimates

Category	Quantity	Unit Cost (\$)	Total Cost (\$)
9 V Battery	2	8.00	16.00
Eyebolt	4	4.28	17.12
Main Parachute	1	N/A	Inventory
Drogue Parachute	1	N/A	Inventory
Recovery Harness	2	N/A	Inventory
Swivel	2	N/A	Inventory
Quick Link	6	N/A	Inventory
Altimeter	2	N/A	Inventory
Terminal block	4	N/A	Inventory
Key lock switch	2	N/A	Inventory
Total:			33.13

Table 26: Avionics and Recovery Component Estimates

Category	Quantity	Unit Cost (\$)	Total Cost (\$)
Motor Retainer	1	46.66	46.66
Motor Forward Closure	1	77.52	77.52
Motor Aft Closure	1	56.18	56.18
Motor Casing	1	203.92	203.92
Thrust Plate	1	44.87	44.87
Aerotech K1050W-PS	3	217.73	653.19
Total:			1082.34

Table 27: Flight Dynamics Component Estimate

Category	Quantity	Unit Cost (\$)	Total Cost (\$)
Digital Signal Processor	2	86.00	172.00
OV5640 Camera	4	24.99	99.96
XBee Transceiver	4	54.08	216.32
Lithium-Ion Batteries	4	14.50	58.00
IMU	4	59.78	239.12
Altimeter	2	12.98	25.96
Printed Circuit Board	5	12.00	60.00
Wiring	1	5.99	5.99
JST Connector Kit	1	23.99	23.99
1/4-20 Well Nuts	4	6.00	24.00
1/4-20 Fasteners	8	N/A	Inventory
1/4-20 Hex-Nuts	4	N/A	Inventory
Total:			925.34

Table 28:	Pavload	Component	Estimate
10010 201	, ayioaa	component	Lotiniate

Category	Quantity	Unit Cost (\$)	Total Cost (includes shipping) (\$)
3" diameter fiberglass	1	59.95	59.95
nosecone			
3" diameter fiberglass	2	102.55	205.10
airframe			
1.5" diameter motor	1	26.18	26.18
tube (2 ft)			
Total:			291.23

Table 29: Subscale Component List

6.3 Funding

This project will be primarily funded by the University of Florida's Student Government during the Fall 2021 semester. The team will also be seeking funding from the University of Florida's Mechanical and Aerospace Engineering Department. The request approval will determine how much funding is allotted to travel and the full-scale rocket build in the Spring 2021 semester. The team sponsor is Aerojet Rocketdyne. The team is actively seeking more corporate sponsorships by having weekly meetings specifically dedicated to reaching out to potential sponsors. The sponsorships range from \$250 to \$1,000, with additional donations made optional. Funding will first be received by our advisors, Dr. Lind and Dr. Niemi, and will then be allocated to our group. The team has also started an alumni program to stay in touch with dedicated members who have graduated, encouraging them to stay involved and support the future of the group.

6.4 Sustainability Plan

The team is primarily funded by the University of Florida's Department of Mechanical and Aerospace Engineering Department, which has reliably provided funding over the past several years. Supplemental funding provided by the University of Florida's Student Government and corporate sponsorships has increased over the past year. The development of business documentation has led to this increase, and it

is projected to maintain a higher level of support for further years. Current sponsors include Aerojet Rocketdyne, and the team will continue to seek corporate sponsorships throughout the year.

The team will maintain relationships with alumni in order to establish further corporate partnerships. Communication with team alumni has been established through Slack as well as a LinkedIn group. New team members will be recruited through the posting of virtual flyers advertising the team and through inperson tabling events that showcase our previous work. Flyers will include meetings, team information and links for the team's social media where updates are regularly posted. Social media will be used to promote events, socials and general body meetings. An increase in events have shown greater social media engagement, and in turn a higher turnout at our general body meetings and subteam meetings. Socials have also proven to increase member retainment and productivity, as they have established a sense of community within the team.

Swamp Launch will further extend its reach throughout the University of Florida by presenting for various technical societies including the American Institute of Aeronautics and Astronautics (AIAA) and the Society of Women Engineers (SWE). Updates will be sent out biweekly to students within the Herbert Wertheim College of Engineering through the Benton Engineering Council (BEC), team hosted Newsletter, and on the UF Canvas page for all MAE students through MAE Undergraduate Advising.

The team will maintain its relationships with local schools and businesses. In addition to in-person events, online zoom activities will be organized for students in Alachua County Public Schools. Brief lectures and bottle rocket demos will be prepared to create and maintain engagement with local schools. A YouTube channel will be maintained as a method of posting updates on the team for students and businesses to observe.

7. Conclusion

Swamp Launch Rocket Team is confident in its proposed Gator Locator design's ability to successfully complete the request put forth by NASA Student Launch. The team will continue to research, develop, and test the design throughout the competition to ensure it is capable of overcoming any challenges it may be presented with.

Appendix A

Testing Plan

The Safety Officers, the Testing Lead, and the necessary Professors and Teaching Assistants will oversee all testing of launch vehicle and payload components (Table 30, Table 31).

Launch Vehicle Testing Plan

Test Number	Test Name	Required Materials and Machinery	Test Procedure	Justification
1	Airframe	Fiberglass airframe,	Place the airframe	Determine if airframe is
	Compression Test	Instron Machine	material in the Instron	strong enough to
			Machine to simulate	withstand compressive
			compressive forces and	forces that will occur
			record data. Compress	when landing and
			airframe both laterally	ensure that it will not
			and axially.	be damaged.
2	Airframe	Fiberglass airframe,	Drop airframe material	Ensure
	Resistance Drop	test parachute	from height of at least 6	that airframe will not
	Test		ft to simulate how	be damaged when
			launch vehicle would	landing. The height
			land after launch onto a	specified will result in
			similar landing terrain of	expected airframe
			grass. Assess resulting	landing speed of 18
			behavior of fiber glass.	ft/s.
3	Bulkhead	Plywood bulkhead,	Place coupler inside	Ensure that bulkheads
	Resistance Test	coupler, eyebolts,	Instron Machine and	will not be damaged
		Instron Machine	pull on eyebolts and	when parachutes
			bulkhead to simulate	deploy.
			how bulkhead would	
			behave during ejection	
			and resulting shear	
			forces.	
4	Rotation & Rolling	Ansys Simulation	Run a computer	Determine how severe
	Test		simulation and evaluate	the rotation (pitch and
			the resulting data	yaw moment) and
			concerning the rotation	rolling (axis pa
			and rolling of the	effects are during
			rocket.	launch and stabilize the
				launch vehicle
				accordingly.

5	Nosecone Drag Test	Computational fluid dynamics (CFD) simulation software	Use CFD simulation to measure resulting drag from nosecone oriented at multiple angles.	Ensure drag is not too great on nosecone to affect flight and adjust nosecone accordingly.
6	Body Tube Drag Test	Computational fluid dynamics (CFD) simulation software	Use CFD simulation to measure resulting drag from body tube oriented at multiple angles.	Ensure drag is not too great on body tube to affect flight and adjust body tube accordingly.
7	Main Parachute Drag Test	Computational fluid dynamics (CFD) simulation software	Use CFD simulation to measure resulting drag from main parachute.	Ensure main parachute provides enough drag to slow the launch vehicle during descent.
8	Drogue Parachute Drag Test	Computational fluid dynamics (CFD) simulation software	Use simulation to measure resulting drag from drogue parachute.	Ensure drogue parachute provides enough drag to slow the launch vehicle during descent.
9	Fin Drag Test	Computational fluid dynamics (CFD) simulation software	Use CFD simulation to measure resulting drag from fin configuration oriented at multiple angles.	Ensure drag is not too great on fins to affect flight and adjust fins accordingly.
10	Altimeter Resolution Test	Altimeter	Place the altimeter at multiple heights.	Ensure altimeter is detecting the correct altitude.
11	Main Parachute Ejection Test	Launch vehicle, main parachute, black powder, electric match, copper wires, test stand, altimeter, remote igniter	Fire ejection charge when launch vehicle is configured for ejection.	Ensure that main parachute will successfully deploy when the launch vehicle separates.
12	Drogue Parachute Ejection Test	Launch vehicle, drogue parachute, black powder, electric match, copper wires, test stand, altimeter, remote igniter	Fire ejection charge when launch vehicle is configured for ejection.	Ensure that drogue parachute will successfully deploy when the launch vehicle separates.

13	Recovery Harness Strength Test	Recovery harness, Instron Machine, accelerometer	Induce an instantaneous force on the recovery harness using the Instron Machine. Determine yield strength of recovery harness. Compare strength value to calculated force estimate using accelerometer data and ensure yield strength exceeds expected force.	Determine if recovery harness is strong enough to withstand forces occurring during separation.
14	Zippering Test	Fiberglass, recovery harness	Induce an instantaneous force to simulate deployment.	Ensure there is no damage to the launch vehicle structure.
15	Black Powder Test	Launch vehicle, black powder, electric match, copper wires, test stand, altimeter, remote igniter	Ignite charges to commence ejection. Perform test for main parachute and drogue parachute.	Establish amount of black powder necessary for full separation of airframe and deployment of parachutes.
16	Vibrational Resistance Test	Launch vehicle	Simulate vibrational forces, similar to those expected during launch, on payload.	Ensure launch vehicle will not be damaged during launch due to vibrational movement.
17	Epoxy Weight Test	Epoxy, fiber glass	Weigh two pieces of fiberglass, epoxy pieces together and weigh once more.	Determine weight of epoxy per inch.
18	Epoxy Heat Test	Epoxy, fiber glass	Create epoxy fillet between two pieces of fiberglass and place in sunlight for a minimum of two hours.	Verify that epoxy will not overheat and soften.
19	Epoxy Strength Test	Epoxy, fiber glass, Instron Machine	Create epoxy fillet between two pieces of fiberglass and place in the Instron Machine. Record any resulting separation	Determine if epoxy will uphold during large compressive forces during landing and ensure it will not allow

			between fiberglass bonding surfaces and compare to calculated expected landing forces.	fins to separate from launch vehicle.
20	Parachute Packing Test	Main and drogue parachute, parachute cover, airframe, insulation, recovery harness, eyebolts, swivels	Fold parachute in an appropriate manner and place in airframe.	Ensure that parachute fits in airframe and will deploy smoothly.
21	Parachute Opening Test	Main and drogue parachute, recovery harness, airframe	Drop airframe from height of at least 20 ft.	Ensure that parachute opens correctly and does not get tangled. The drop height was set to give parachute ample time to open during descent.
22	Subscale Demonstration Launch	Subscale model in full configuration	Launch the subscale model.	Ensure all components of the subscale perform successfully.
23	Vehicle Demonstration Launch	Launch vehicle in full configuration	Launch the launch vehicle in its final configuration.	Ensure all components of the launch vehicle perform successfully.
24	Launch Rehearsal	Launch vehicle and payload in full configuration	Fully assemble launch vehicle (without the motor) and payload in appropriate amount of time.	Determine required amount of time to assemble launch vehicle in order to prepare for final launch day and ensure preparation can be completed in less than 2 hours.

Table 30: Launch Vehicle Testing Plan

Payload Testing Plan

Test Number	Test Name	Required Materials and Machinery	Test Procedure	Justification
25	Drone Camera	Payload camera, testing	Place payload	Ensure camera
	Landmark Test	drone	camera on a testing	can capture 3
			drone and fly it to	landmarks
			predicted	during ascent

			altitude. Perform	and descent
			test for both the	time.
			cameras.	
26	Drone Camera	Payload camera, testing	Place payload	Ensure the
	Quality Test	drone	camera on a testing	quality of the
			drone and fly it to	images
			predicted	captured is
			altitude. Perform	high enough to
			test for both the	detect 3
			cameras.	landmarks.
27	Field-of-View	Payload camera, testing	Place payload	Determine the
	Test	drone	camera on a testing	field-of-view of
			drone and measure	the cameras.
			the distance the	
			camera can see.	
			Confirm	
			observations with	
			calculations of field-	
			of-view. Perform test	
			for both the	
			cameras.	
28	Drone Offset	Payload camera, gyroscope,	Place payload	Determine
	Test	testing drone	camera on a testing	angle of offset
			drone and fly it to	of camera to
			predicted altitude.	ensure camera
			Fly drone at multiple	can adjust its
			angles and observe	angles.
			angle of offset. Apply	_
			offset calculations to	
			code.	
29	Battery Life Test	Battery, payload	Allow battery to run	Ensure that the
			for a minimum of 2	battery can
			hours.	maintain a
				charge so that
				the launch
				vehicle can be
				launch-ready
				for at least 2
				hours.
30	Accelerometer	Accelerometer, recovery	Simulate launch	Ensure it is
	Accuracy Test	harness, eyebolt	movement by	reporting the

			attaching accelerometer to recovery harness and spinning it. Move the spinning accelerometer a straight measured distance.	appropriate displacement.
31	Heat Resistance Test	Payload, fiberglass airframe, thermometer	Place payload inside airframe and leave outside in sunlight for a minimum of 2 hours. Measure temperature using thermometer and assess possible resulting damage from heat.	Ensure that the payload will not overheat so that the launch vehicle can be launch-ready for at least 2 hours.
32	Ejection	Payload, black powder,	Perform a separation	Ensure payload
	Resistance Test	copper wire, electric match,	ejection test with	will not be
		test stand, remote igniter,	payload inside	damaged from
		launch vehicle	launch vehicle.	ejection charges
33	Power Loss Test	Launch vehicle in launch	Momentarily	Ensure pavload
		configuration, payload	disconnect power	will continue
			when the launch	operation
			vehicle is configured	correctly in a
			for launch. Assess if	circumstance of
			the system's	loss of power.
			redundancies allow it	
			to recover and	
			continue operation.	
34	Vibrational	Payload	Simulate vibrational	Ensure payload
	Resistance Test		forces, similar	will not be
			to those expected	damaged
			during launch, on	during
			payload.	launch due to
				vibrational
				movement.
35	Payload Drop	Payload, airframe, test	Drop payload in	Ensure payload
	Test	parachute	airframe from height	will not be

			of at least 6 ft to simulate how payload would land after launch.	damaged when landing. The height specified will result in expected launch vehicle landing speed of 18 ft/s.
36	Strength of Camera Mount Test	Computational fluid dynamics (CFD) simulation software	Use CFD simulation to determine forces on camera and camera mount during launch.	Ensure payload will remain attached securely to the airframe during launch.
37	Static Firing Test	Motor, motor retention system, test stand, fiberglass airframe, payload	Test stand will be designed and built by the Structures Lead. Configure payload and motor inside airframe, place on test stand, and fire the motor.	Ensure that payload cameras and wiring do not overheat as the motor fires.
38	Software Implementation Test	OpenCV software, payload	Run code utilized for payload completely through.	Evaluate if software is properly implemented with hardware and debug code if necessary.
39	Digital Signal Processor (DSP) Functionality Test	DSP, starter kit software	Plug DSP into laptop and run starter kit software.	Ensure DSP is functioning correctly and determine if there are any bugs in the system.
40	Inertial Measurement Unit (IMU)	IMU, testing kit software, DSP	Plug IMU into laptop, orient it in a certain configuration, and collect acceleration	Ensure IMU is measuring correctly and determine if

	Functionality Test		and orientation data. Compare collected	there are any bugs in the
			data to	system.
			measurements made	,
			of the current	
			orientation.	
41	XBee Radio	XBee radio, serial converter,	Plug the XBee	Ensure the
	Functionality	X-CTU software, DSP	transmitter and XBee	XBee radios are
	Test		receiver into	able to
			separate laptops and	establish a
			send data packets	connection.
			through X-TCU.	
42	Microprocessor	Microprocessor, computer	Plug microprocessor	Ensure
	Functionality		into computer and	microprocessor
	Test		upload an example	is functioning
			program.	correctly.
43	SD Card	SD card, computer	Write data to the SD	Ensure SD card
	Functionality		card through the	is functioning
	Test		DSP. Read back data	correctly.
			and confirm that it	
			matches the	
			originally written	
			data.	
44	Wire Tube Test	Cardboard wire tube,	Configure wire tube	Ensure that
		centering rings, airframe	set-up and	wire tube is
			determine if tube	large enough to
			interferes with	protect wires
			centering rings and if	without
			tube fits in airframe.	compromising
				motor position.
45	Payload	Launch vehicle and payload	Launch fully	Ensure payload
	Demonstration	in full configuration	constructed payload	captures 3
	Flight		in launch vehicle.	landmarks and
				defines
				location.

Table 31: Payload Testing Plan

Testing Safety by Reference Number

Table 32 outlines the necessary safety precautions that must be taken when performing the listed tests. The table refers to each test by its number and includes a description of the safety steps that will be taken.

Т	est	N	um	her	
	CSC		un	NCI	

Safety Precautions

1	The Instron Machine will only be operated by permitted personnel while other
L	team members will maintain a safe distance from the machine when in use.
2	The airframe will be dropped at a safe distance away from team members or
2	pedestrians.
2	The bulkhead will be dropped at a safe distance away from team members or
5	pedestrians.
4	Not applicable, negligible risk.
F	The wind tunnel will only be operated by permitted personnel and team members will
5	maintain a safe distance from the wind tunnel.
E.	The wind tunnel will only be operated by permitted personnel and team members will
0	maintain a safe distance from the wind tunnel.
7	The wind tunnel will only be operated by permitted personnel and team members will
/	maintain a safe distance from the wind tunnel.
0	The wind tunnel will only be operated by permitted personnel and team members will
0	maintain a safe distance from the wind tunnel.
0	The wind tunnel will only be operated by permitted personnel and team members will
5	maintain a safe distance from the wind tunnel.
10	Not applicable, negligible risk.
11	Team members will maintain a safe distance from the launch vehicle during ejection.
12	Team members will maintain a safe distance from the launch vehicle during ejection.
13	Team members will maintain a safe distance from the launch vehicle during induced
15	force.
	Team members will maintain a safe distance from the launch vehicle during induced
14	force.
15	Team members will maintain a safe distance from the launch vehicle during ejection.
16	Team members will maintain a safe distance from the launch vehicle during vibrational
	simulation.
17	Not applicable, negligible risk.
18	Not applicable, negligible risk.
19	The Instron Machine will only be operated by permitted personnel and other team
	members will maintain a safe distance from the machine when in use.
20	Not applicable, negligible risk.
21	The airframe will be dropped at a safe distance away from team members or
	pedestrians.
22	Team members will follow safety regulations set by the NAR/Tripoli Range Safety
	Officer.
23	Team members will follow safety regulations set by the NAR/Tripoli Range Safety
	Officer.
24	Not applicable, negligible risk.

25	Team members will maintain a safe distance from the drone during takeoff and landing		
	Team members will maintain a safe distance from the drone during takeoff and		
26	landing.		
	Team members will maintain a safe distance from the drone during takeoff and		
27	landing.		
20	Team members will maintain a safe distance from the drone during takeoff and		
28	landing.		
29	Not applicable, negligible risk.		
30	Team members will maintain a safe distance from accelerometer when spinning it.		
31	Not applicable, negligible risk.		
32	Team members will maintain a safe distance from the launch vehicle during ejection.		
33	Not applicable, negligible risk.		
34	Team members will maintain a safe distance from the launch vehicle during vibrational		
54	simulation.		
35	The payload will be dropped at a safe distance away from team members or		
	pedestrians.		
36	The wind tunnel will only be operated by permitted personnel and team members will		
	maintain a safe distance from the wind tunnel.		
37	Team members will maintain a safe distance from the launch vehicle during firing and		
	fire extinguishers will be provided in case of emergency.		
38	Not applicable, negligible risk.		
39	Not applicable, negligible risk.		
40	Not applicable, negligible risk.		
41	Not applicable, negligible risk.		
42	Not applicable, negligible risk.		
43	Not applicable, negligible risk.		
44	Not applicable, negligible risk.		
45	Team members will follow safety regulations set by the NAR/Tripoli Range Safety		

Table 32: Testing safety list